Zobrazeno 1 - 10
of 136
pro vyhledávání: '"Tsekos, Nikolaos"'
Autor:
Lalande, Alain, Chen, Zhihao, Pommier, Thibaut, Decourselle, Thomas, Qayyum, Abdul, Salomon, Michel, Ginhac, Dominique, Skandarani, Youssef, Boucher, Arnaud, Brahim, Khawla, de Bruijne, Marleen, Camarasa, Robin, Correia, Teresa M., Feng, Xue, Girum, Kibrom B., Hennemuth, Anja, Huellebrand, Markus, Hussain, Raabid, Ivantsits, Matthias, Ma, Jun, Meyer, Craig, Sharma, Rishabh, Shi, Jixi, Tsekos, Nikolaos V., Varela, Marta, Wang, Xiyue, Yang, Sen, Zhang, Hannu, Zhang, Yichi, Zhou, Yuncheng, Zhuang, Xiahai, Couturier, Raphael, Meriaudeau, Fabrice
A key factor for assessing the state of the heart after myocardial infarction (MI) is to measure whether the myocardium segment is viable after reperfusion or revascularization therapy. Delayed enhancement-MRI or DE-MRI, which is performed several mi
Externí odkaz:
http://arxiv.org/abs/2108.04016
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
In Computer Methods and Programs in Biomedicine January 2021 198
Autor:
Sharma, Rishabh, Tsiamyrtzis, Panagiotis, Webb, Andrew G., Leiss, Ernst L., Tsekos, Nikolaos V.
Publikováno v:
MAGMA: Magnetic Resonance Materials in Physics, Biology & Medicine; Jul2024, Vol. 37 Issue 3, p507-528, 22p
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
In Journal of Magnetic Resonance September 2012 222:16-25
Publikováno v:
Computational Science – ICCS 2020
In this work, we develop an adaptive, near-optimal, 3-Dimensional (3D) to 1D ordering methodology for brain magnetic resonance imaging (MRI) data, using a space-filling curve (SFC) trajectory, which is adaptive to brain’s shape as captured by MRI.