Zobrazeno 1 - 10
of 56
pro vyhledávání: '"Tsekanovskii, Eduard"'
Given a symmetric operator $\dot A$ with deficiency indices $(1,1)$ and its self-adjoint extension $A$ in a Hilbert space $\mathcal{H}$, we construct a (unique) L-system with the main operator in $\mathcal{H}$ such that its impedance mapping coincide
Externí odkaz:
http://arxiv.org/abs/2306.06828
Autor:
Belyi, Sergey, Tsekanovskii, Eduard
We study L-system realizations of the original Weyl-Titchmarsh functions $(-m_\alpha(z))$. In the case when the minimal symmetric Schr\"odinger operator is non-negative, we describe the Schr\"odinger L-systems that realize inverse Stieltjes functions
Externí odkaz:
http://arxiv.org/abs/2301.10058
Publikováno v:
Complex Analysis and Operator Theory, vol. 16, 107 (2022)
We study L-systems whose main operators are extensions of one-dimensional half-line Schr\"odinger operators with deficiency indices $(1, 1)$, the Schr\"odinger L-systems. Introducing new concepts of an c-entropy and dissipation coefficient for an L-s
Externí odkaz:
http://arxiv.org/abs/2108.06567
Autor:
Belyi, Sergey, Tsekanovskii, Eduard
Publikováno v:
Contributions to Mathematics and Statistics, Acta Wasaensia, vol. 462, (2021), pp. 37-54
In this paper we study the L-system realizations generated by the original Weyl-Titchmarsh functions $m_\alpha(z)$ in the case when the minimal symmetric Shr\"o\-dinger operator in $L_2[\ell,+\infty)$ is non-negative. We realize functions $(-m_\alpha
Externí odkaz:
http://arxiv.org/abs/2012.08069
Autor:
Belyi, Sergey, Tsekanovskii, Eduard
Publikováno v:
Complex Analysis and Operator Theory, vol. 15 (1), 11 (2021)
We study realizations generated by the original Weyl-Titchmarsh functions $m_\infty(z)$ and $m_\alpha(z)$. It is shown that the Herglotz-Nevanlinna functions $(-m_\infty(z))$ and $(1/m_\infty(z))$ can be realized as the impedance functions of the cor
Externí odkaz:
http://arxiv.org/abs/2006.13045
Autor:
Belyi, Sergey, Tsekanovskii, Eduard
We study linear perturbations of Donoghue classes of scalar Herglotz-Nevanlinna functions by a real parameter $Q$ and their representations as impedance of conservative L-systems. Perturbation classes $\mathfrak M^Q$, $\mathfrak M^Q_\kappa$, $\mathfr
Externí odkaz:
http://arxiv.org/abs/1806.06329
We study unimodular transformations of conservative $L$-systems. Classes $\sM^Q$, $\sM^Q_\kappa$, $\sM^{-1,Q}_\kappa$ that are impedance functions of the corresponding $L$-systems are introduced. A unique unimodular transformation of a given $L$-syst
Externí odkaz:
http://arxiv.org/abs/1608.08583
We study the impedance functions of conservative L-systems with the unbounded main operators. In addition to the generalized Donoghue class $\sM_\kappa$ of Herglotz-Nevanlinna functions considered by the authors earlier, we introduce "inverse" genera
Externí odkaz:
http://arxiv.org/abs/1506.06627
We establish a mutual relationship between main analytic objects for the dissipative extension theory of a symmetric operator $\dot A$ with deficiency indices $(1,1)$. In particular, we introduce the Weyl-Titchmarsh function $\cM$ of a maximal dissip
Externí odkaz:
http://arxiv.org/abs/1301.4610
Autor:
Belyi, Sergey, Tsekanovskii, Eduard
A class of scalar Stieltjes like functions is realized as linear-fractional transformations of transfer functions of conservative systems based on a Schr\"odinger operator T_h in $L_2[a,+\infty)$ with a non-selfadjoint boundary condition. In particul
Externí odkaz:
http://arxiv.org/abs/0708.0452