Zobrazeno 1 - 7
of 7
pro vyhledávání: '"Tsegaye, Eyob"'
Let $G$ be a finite group and construct a graph $\Delta(G)$ by taking $G\setminus\{1\}$ as the vertex set of $\Delta(G)$ and by drawing an edge between two vertices $x$ and $y$ if $\langle x,y\rangle$ is cyclic. Let $K(G)$ be the set consisting of th
Externí odkaz:
http://arxiv.org/abs/2402.06157
In 1963, Greenberg proved that every finite group appears as the monodromy group of some morphism of Riemann surfaces. In this paper, we give two constructive proofs of Greenberg's result. First, we utilize free groups, which given with the universal
Externí odkaz:
http://arxiv.org/abs/2103.10407
Publikováno v:
Bull. Aust. Math. Soc. 104 (2021) 295-301
For a group $G$, we define a graph $\Delta(G)$ by letting $G^{\#} = G \setminus \{ 1 \}$ be the set of vertices and by drawing an edge between distinct elements $x,y\in G^{\#}$ if and only if the subgroup $\langle x,y\rangle$ is cyclic. Recall that a
Externí odkaz:
http://arxiv.org/abs/2008.07322
Publikováno v:
Involve 14 (2021) 167-179
Let $G$ be a finite group. Define a graph on the set $G^{\#} = G \setminus \{ 1 \}$ by declaring distinct elements $x,y\in G^{\#}$ to be adjacent if and only if $\langle x,y\rangle$ is cyclic. Denote this graph by $\Delta(G)$. The graph $\Delta(G)$ h
Externí odkaz:
http://arxiv.org/abs/2005.05828
We prove a quantitative local limit theorem for the number of descents in a random permutation. Our proof uses a conditioning argument and is based on bounding the characteristic function $\phi(t)$ of the number of descents. We also establish a centr
Externí odkaz:
http://arxiv.org/abs/1810.02425
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.