Zobrazeno 1 - 10
of 27
pro vyhledávání: '"Tscherpel, Tabea"'
For a general class of nonlinear port-Hamiltonian systems we develop a high-order time discretization scheme with certain structure preservation properties. The finite or infinite-dimensional system under consideration possesses a Hamiltonian functio
Externí odkaz:
http://arxiv.org/abs/2404.12480
For triangulations generated by the adaptive bisection algorithm by Maubach and Traxler we prove existence of a regularized mesh function with grading two. This sharpens previous results in two dimensions for the newest vertex bisection and generaliz
Externí odkaz:
http://arxiv.org/abs/2305.05742
Autor:
Scott, L. Ridgway, Tscherpel, Tabea
Publikováno v:
SIAM J. Sci. Comput., 46(2), 2024
We examine the dimensions of various inf-sup stable mixed finite element spaces on tetrahedral meshes in 3D with exact divergence constraints. More precisely, we compare the standard Scott-Vogelius elements of higher polynomial degree and low order m
Externí odkaz:
http://arxiv.org/abs/2301.00185
We introduce a Scott--Zhang type projection operator mapping to Lagrange elements for arbitrary polynomial order. In addition to the usual properties, this operator is compatible with duals of first order Sobolev spaces. More specifically, it is stab
Externí odkaz:
http://arxiv.org/abs/2112.08515
This work is devoted to the structure of the time-discrete Green-Naghdi equations including bathymetry. We use the projection structure of the equations to characterize homogeneous and inhomogeneous boundary conditions for which the semi-discrete equ
Externí odkaz:
http://arxiv.org/abs/2106.05048
We design a Fortin operator for the lowest-order Taylor-Hood element in any dimension, which was previously constructed only in 2D. In the construction we use tangential edge bubble functions for the divergence correcting operator. This naturally lea
Externí odkaz:
http://arxiv.org/abs/2104.13953
Publikováno v:
SIAM J. Numer. Anal., 59(5), 2021
We show stability of the $L^2$-projection onto Lagrange finite element spaces with respect to (weighted) $L^p$ and $W^{1,p}$-norms for any polynomial degree and for any space dimension under suitable conditions on the mesh grading. This includes $W^{
Externí odkaz:
http://arxiv.org/abs/2008.01801
Autor:
Süli, Endre, Tscherpel, Tabea
Implicit constitutive theory provides a very general framework for fluid flow models, including both Newtonian and generalized Newtonian fluids, where the Cauchy stress tensor and the rate of strain tensor are assumed to be related by an implicit rel
Externí odkaz:
http://arxiv.org/abs/1804.02264
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
PUB-Publications at Bielefeld University
We introduce a Scott–Zhang type projection operator mapping to Lagrange elements for arbitrary polynomial order. In addition to the usual properties, this operator is compatible with duals of first order Sobolev spaces. More specifically, it is sta