Zobrazeno 1 - 10
of 3 351
pro vyhledávání: '"Tschanz A"'
Autor:
Tschanz, Calla
In this paper, we explore different possible choices of expanded degenerations and define appropriate stability conditions in order to construct good degenerations of Hilbert schemes of points over semistable degenerations of surfaces, given as prope
Externí odkaz:
http://arxiv.org/abs/2402.10209
Autor:
Métras, Antoine, Tschanz, Léonard
Publikováno v:
Experimental Mathematics, 1 (2024)
We study the Steklov problem on hypersurfaces of revolution with two boundary components in Euclidean space. In a recent article, the phenomenon of critical length, at which a Steklov eigenvalue is maximized, was exhibited and multiple questions were
Externí odkaz:
http://arxiv.org/abs/2401.10743
Autor:
Tschanz, Calla
The aim of this paper is to extend the expanded degeneration construction of Li and Wu to obtain good degenerations of Hilbert schemes of points on semistable families of surfaces, as well as to discuss alternative stability conditions and parallels
Externí odkaz:
http://arxiv.org/abs/2310.08987
Autor:
Karen C. Schliep, Jeffrey Thornhill, JoAnn T. Tschanz, Julio C. Facelli, Truls Østbye, Michelle K. Sorweid, Ken R. Smith, Michael Varner, Richard D. Boyce, Christine J. Cliatt Brown, Huong Meeks, Samir Abdelrahman
Publikováno v:
BMC Medical Informatics and Decision Making, Vol 24, Iss 1, Pp 1-10 (2024)
Abstract Introduction Clinical notes, biomarkers, and neuroimaging have proven valuable in dementia prediction models. Whether commonly available structured clinical data can predict dementia is an emerging area of research. We aimed to predict gold-
Externí odkaz:
https://doaj.org/article/e6cae617ec31401f8e51cff8a7574d7f
Autor:
Tschanz, Léonard
Publikováno v:
Ann. Math. Qu\'ebec 48, 489 (2024)
We investigate the question of sharp upper bounds for the Steklov eigenvalues of a hypersurface of revolution of the Euclidean space with two boundary components isometric to two copies of $\mathbb{S}^{n-1}$. For the case of the first non zero Steklo
Externí odkaz:
http://arxiv.org/abs/2302.11964
Autor:
Genevieve E. Finerty, Natalia Borrego, Sky K. Alibhai, Zoe C. Jewell, Philippe Tschanz, Trevor Balone, Tebelelo Gabaikanye, Moisapodi Gana, Supula Monnaanoka, Mosepele Mamou, Sokwa Pudidaroma, Meno Tshiama, Mpho Tshiama, Alessandro Araldi, Margaret C. Crofoot, Steve Henley, Pogiso ‘Africa’ Ithuteng, Monika Schiess-Meier
Publikováno v:
Frontiers in Conservation Science, Vol 5 (2024)
The study of large carnivores in semi-arid ecosystems presents inherent challenges due to their low densities, extensive home ranges, and elusive nature. We explore the potential for the synthesis of traditional knowledge (i.e. art of tracking) and m
Externí odkaz:
https://doaj.org/article/c27eb2e2f48345a9b02aa39ff8bb4129
Publikováno v:
In Agriculture, Ecosystems and Environment 1 November 2024 375
Autor:
Tschanz, Léonard
Publikováno v:
J Geom Anal 33, 161 (2023)
We introduce a graph $\Gamma$ which is roughly isometric to the hyperbolic plane and we study the Steklov eigenvalues of a subgraph with boundary $\Omega$ of $\Gamma$. For $(\Omega_l)_{l\geq 1}$ a sequence of subraphs of $\Gamma$ such that $|\Omega_l
Externí odkaz:
http://arxiv.org/abs/2202.04941
Autor:
Ewa Sitarska, Silvia Dias Almeida, Marianne Sandvold Beckwith, Julian Stopp, Jakub Czuchnowski, Marc Siggel, Rita Roessner, Aline Tschanz, Christer Ejsing, Yannick Schwab, Jan Kosinski, Michael Sixt, Anna Kreshuk, Anna Erzberger, Alba Diz-Muñoz
Publikováno v:
Nature Communications, Vol 14, Iss 1, Pp 1-15 (2023)
Abstract To navigate through diverse tissues, migrating cells must balance persistent self-propelled motion with adaptive behaviors to circumvent obstacles. We identify a curvature-sensing mechanism underlying obstacle evasion in immune-like cells. S
Externí odkaz:
https://doaj.org/article/505ca1c735d5448bb63418ff9ca18075
Autor:
Tschanz, Léonard
Publikováno v:
Ann Glob Anal Geom 61, 37 (2022)
We study the Steklov problem on a subgraph with boundary $(\Omega,B)$ of a polynomial growth Cayley graph $\Gamma$. We prove that for each $k \in \mathbb{N}$, the $k^{\mbox{th}}$ eigenvalue tends to $0$ proportionally to $1/|B|^{\frac{1}{d-1}}$, wher
Externí odkaz:
http://arxiv.org/abs/2101.04402