Zobrazeno 1 - 10
of 10
pro vyhledávání: '"Tsasa, Lusala"'
Autor:
Tsasa, Lusala, Śniatycki, Jędrzej
We show that, if the family \cal{O} of orbits of all vector fields on a subcartesian space P is locally finite and each orbit in \cal{O} is locally closed, then \cal{O} defines a smooth Whitney A stratification of P. We also show that the stratificat
Externí odkaz:
http://arxiv.org/abs/0805.4807
Autor:
Tsasa Lusala, Jędrzej Śniatycki
Publikováno v:
Demonstratio Mathematica, Vol 47, Iss 1, Pp 192-210 (2014)
We show that the space P/G of orbits of a proper action of a Lie group G on a locally compact differential space P is a locally compact differential space with quotient topology. Applying this result to reduction of symmetries of Hamiltonian systems,
Autor:
Tsasa Lusala, André Gomes de Oliveira
Publikováno v:
Comptes Rendus Mathematique. 340:437-440
We consider a closed hypersurface M 3 ⊂ S 4 ( 1 ) with identically zero Gaus–Kronecker curvature. We prove that if M 3 has constant mean curvature H, then M 3 is minimal, i.e., H = 0 . This result extends Ramanathan's classification (Math. Z. 205
Publikováno v:
Asian Journal of Mathematics. 9:65-78
We consider minimal closed hypersurfaces M 4 � S 5 (1) with constant scalar curva- ture. We prove that, if M 4 is additionally a Willmore hypersurface, then it is isoparametric. This gives a positive answer to the question made by Chern about the p
Autor:
Tsasa Lusala
Publikováno v:
Results in Mathematics. 38:130-143
We prove that Tchebychev surfaces of S3(1) with constant mean curvature or with shape operator of constant squared length are isoparametric. We summarize our results in a survey of types of isoparametric and non-isoparametric Tchebychev surfaces.
Autor:
Jędrzej Śniatycki, Tsasa Lusala
We show that, if the family \cal{O} of orbits of all vector fields on a subcartesian space P is locally finite and each orbit in \cal{O} is locally closed, then \cal{O} defines a smooth Whitney A stratification of P. We also show that the stratificat
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::56d59274c99aa995a8111d957c50cca7
http://arxiv.org/abs/0805.4807
http://arxiv.org/abs/0805.4807
We discuss properties of the regular part Sreg of a subcartesian space S. We show that Sreg is open and dense in S and the restriction to Sreg of the tangent bundle space of S is locally trivial.
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::088d9ce71481ba72ab2f09b1c47cf001
http://arxiv.org/abs/0803.1147
http://arxiv.org/abs/0803.1147
Autor:
Tsasa Lusala
Publikováno v:
Hokkaido Math. J. 33, no. 1 (2004), 65-82
We give a partial local description of minimal hypersurfaces M 3 with identically zero Gauss-Kronecker curvature function in the unit 4-sphere S 4 (1), without assumption on the compactness of M 3 .
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::910ff875f3561317e3a0867a00db33e5
http://projecteuclid.org/euclid.hokmj/1285766005
http://projecteuclid.org/euclid.hokmj/1285766005
Autor:
Tsasa Lusala
Publikováno v:
Differential Geometry, Valencia 2001
Autor:
Tsasa Lusala
Publikováno v:
Geometry and Topology of Submanifolds X.