Zobrazeno 1 - 10
of 124
pro vyhledávání: '"Tsarev, S A"'
Publikováno v:
Functional Anal. Appl. 48:4 (2014), 295-297
By the Moutard transformation method we construct two-dimensional Schrodinger operators with real smooth potential decaying at infinity and with a multiple positive eigenvalue. These potentials are rational functions of spatial variables and their si
Externí odkaz:
http://arxiv.org/abs/1307.5141
Autor:
Taimanov, I. A., Tsarev, S. P.
Publikováno v:
Theoret. and Math. Phys. 176 (2013), 1176-1183
We demonstrate how the Moutard transformation of two-dimensional Schrodinger operators acts on the Faddeev eigenfunctions on the zero energy level and present some explicitly computed examples of such eigenfunctions for smooth fast decaying potential
Externí odkaz:
http://arxiv.org/abs/1208.4556
The Moutard transformation: an algebraic formalism via pseudodifferential operators and applications
Autor:
Taimanov, I. A., Tsarev, S. P.
Publikováno v:
OCAMI (Osaka City University Advanced Mathematical Institute) Study Series, V. 3, 2010, pp. 171-185
We consider the Moutard transformation which is a two-dimensional version of the well-known Darboux transformation. We give an algebraic interpretation of the Moutard transformation as a conjugation in an appropriate ring and the corresponding versio
Externí odkaz:
http://arxiv.org/abs/0906.5141
Autor:
Tsarev, S. P., Shemyakova, E.
Here, Darboux's classical results about transformations with differential substitutions for hyperbolic equations are extended to the case of parabolic equations of the form $L u = \big(D^2_{x} + a(x,y) D_x + b(x,y) D_y + c(x,y)\big)u=0$. We prove a g
Externí odkaz:
http://arxiv.org/abs/0811.1492
We investigate second order quasilinear equations of the form f_{ij} u_{x_ix_j}=0 where u is a function of n independent variables x_1, ..., x_n, and the coefficients f_{ij} are functions of the first order derivatives p^1=u_{x_1}, >..., p^n=u_{x_n}
Externí odkaz:
http://arxiv.org/abs/0802.2626
Autor:
Taimanov, I. A., Tsarev, S. P.
Publikováno v:
Theoret. and Math. Phys. 157 (2007), 1525-1541
By using the Moutard transformation of two-dimensional Schroedinger operators we derive a procedure for constructing explicit examples of such operators with rational fast decaying potentials and degenerate $L_2$-kernels (this construction was sketch
Externí odkaz:
http://arxiv.org/abs/0801.3225
Autor:
Tsarev, S. P.
We start with elementary algebraic theory of factorization of linear ordinary differential equations developed in the period 1880-1930. After exposing these classical results we sketch more sophisticated algorithmic approaches developed in the last 2
Externí odkaz:
http://arxiv.org/abs/0801.1341
Autor:
Taimanov, I. A., Tsarev, S. P.
Publikováno v:
Russian Mathematical Surveys 62:3 (2007), 631-633
Using Moutard transformations we show how explicit examples of two-dimensional Schroedinger operators with fast decaying potential and multidimensional $L_2$-kernel may be constructed
Comment: 3 pages
Comment: 3 pages
Externí odkaz:
http://arxiv.org/abs/0706.3595
Autor:
Bobenko, A. I., Tsarev, S. P.
We study local and global approximations of smooth nets of curvature lines and smooth conjugate nets by respective discrete nets (circular nets and planar quadrilateral nets) with infinitesimal quads. It is shown that choosing the points of discrete
Externí odkaz:
http://arxiv.org/abs/0706.3221
Autor:
Tsarev, S. P., Wolf, T.
We classify all integrable 3-dimensional scalar discrete quasilinear equations Q=0 on an elementary cubic cell of the 3-dimensional lattice. An equation Q=0 is called integrable if it may be consistently imposed on all 3-dimensional elementary faces
Externí odkaz:
http://arxiv.org/abs/0706.2464