Zobrazeno 1 - 10
of 6 027
pro vyhledávání: '"Tsallis C"'
This study investigates city dynamics employing a nonextensive diffusion equation suited for addressing diffusion within a fractal medium, where the nonadditive parameter, $q$, plays a relevant role. The findings demonstrate the efficacy of this appr
Externí odkaz:
http://arxiv.org/abs/2407.12681
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Constantino Tsallis
Publikováno v:
Entropy, Vol 23, Iss 5, p 630 (2021)
In the present Reply we restrict our focus only onto the main erroneous claims by Pessoa and Costa in their recent Comment (Entropy 2020, 22, 1110).
Externí odkaz:
https://doaj.org/article/5036485a81bb48f8b521601adbc8cebe
Autor:
Pedro Pessoa, Bruno Arderucio Costa
Publikováno v:
Entropy, Vol 22, Iss 10, p 1110 (2020)
In a recent paper (Entropy 2020, 22(1), 17), Tsallis states that entropy—as in Shannon or Kullback–Leiber’s definitions—is inadequate to interpret black hole entropy and suggests that a new non-additive functional should take the role of entr
Externí odkaz:
https://doaj.org/article/6d920fa96b9a4288bfd28f8adedccf88
Autor:
Zamora, D. J., Tsallis, C.
Entropic-force cosmology provides, in contrast with dark energy descriptions, a concrete physical understanding of the accelerated expansion of the universe. The acceleration appears to be a consequence of the entropy associated with the information
Externí odkaz:
http://arxiv.org/abs/2201.03385
Autor:
Zamora, D. J., Tsallis, C.
We analyze the thermodynamical consistency of entropic-force cosmological models. Our analysis is based on a generalized entropy scaling with an arbitrary power of the Hubble radius. The Bekenstein-Hawking entropy, proportional to the area, and the n
Externí odkaz:
http://arxiv.org/abs/2201.01835
Publikováno v:
In Physica A: Statistical Mechanics and its Applications 1 February 2024 635
Publikováno v:
Phys. Rev. E 94, 062105 (2016)
Nonlinear Fokker-Planck equations endowed with curl drift forces are investigated. The conditions under which these evolution equations admit stationary solutions, which are $q$-exponentials of an appropriate potential function, are determined. It is
Externí odkaz:
http://arxiv.org/abs/1609.00972
Autor:
Plastino, A. R., Tsallis, C.
We consider dissipation in a recently proposed nonlinear Klein-Gordon dynamics that admits soliton-like solutions of the power-law form $e_q^{i(kx-wt)}$, involving the $q$-exponential function naturally arising within the nonextensive thermostatistic
Externí odkaz:
http://arxiv.org/abs/1510.00415
Publikováno v:
J. Stat. Mech. (2011) P10016
It was recently proven [Hilhorst, JSTAT, P10023 (2010)] that the q-generalization of the Fourier transform is not invertible in the full space of probability density functions for q > 1. It has also been recently shown that this complication disappea
Externí odkaz:
http://arxiv.org/abs/1108.2690