Zobrazeno 1 - 10
of 82
pro vyhledávání: '"Trung-Nghia Vu"'
Autor:
Solmaz Yazdani, Christina Seitz, Can Cui, Anikó Lovik, Lu Pan, Fredrik Piehl, Yudi Pawitan, Ulf Kläppe, Rayomand Press, Kristin Samuelsson, Li Yin, Trung Nghia Vu, Anne-Laure Joly, Lisa S. Westerberg, Björn Evertsson, Caroline Ingre, John Andersson, Fang Fang
Publikováno v:
Nature Communications, Vol 13, Iss 1, Pp 1-13 (2022)
Amyotrophic lateral sclerosis (ALS) is a primary neurodegenerative disease, which is characterized by increased immune cell infiltration of the central nervous system. Here authors show that the phenotypic profile of T cells in the blood and cerebros
Externí odkaz:
https://doaj.org/article/e714ab3715384135ac15de40b069b50f
Publikováno v:
BMC Genomics, Vol 23, Iss 1, Pp 1-13 (2022)
Abstract Background Circular RNA (circRNA), a class of RNA molecule with a loop structure, has recently attracted researchers due to its diverse biological functions and potential biomarkers of human diseases. Most of the current circRNA detection me
Externí odkaz:
https://doaj.org/article/edf61b1cb4a5486c8da94674d24fabdb
Autor:
Dat Thanh Nguyen, Quang Thinh Trac, Thi-Hau Nguyen, Ha-Nam Nguyen, Nir Ohad, Yudi Pawitan, Trung Nghia Vu
Publikováno v:
BMC Bioinformatics, Vol 22, Iss 1, Pp 1-18 (2021)
Abstract Background Circular RNA (circRNA) is an emerging class of RNA molecules attracting researchers due to its potential for serving as markers for diagnosis, prognosis, or therapeutic targets of cancer, cardiovascular, and autoimmune diseases. C
Externí odkaz:
https://doaj.org/article/17195e1fcaf14da6b399387fcd2e842a
Autor:
Wenjiang Deng, Sarath Murugan, Johan Lindberg, Venkatesh Chellappa, Xia Shen, Yudi Pawitan, Trung Nghia Vu
Publikováno v:
Frontiers in Genetics, Vol 13 (2022)
Several fusion genes are directly involved in the initiation and progression of cancers. Numerous bioinformatics tools have been developed to detect fusion events, but they are mainly based on RNA-seq data. The whole-exome sequencing (WES) represents
Externí odkaz:
https://doaj.org/article/b7966c29c19d44509e2e9bc8d7f5cc9b
Autor:
Marco Silvestri, Trung Nghia Vu, Federico Nichetti, Monica Niger, Serena Di Cosimo, Filippo De Braud, Giancarlo Pruneri, Yudi Pawitan, Stefano Calza, Vera Cappelletti
Publikováno v:
Cancer Medicine. 12:10156-10168
Publikováno v:
Frontiers in Genetics, Vol 10 (2020)
Detection of differentially expressed genes is a common task in single-cell RNA-seq (scRNA-seq) studies. Various methods based on both bulk-cell and single-cell approaches are in current use. Due to the unique distributional characteristics of single
Externí odkaz:
https://doaj.org/article/8e26d9746d9e48e79b2072d14465f181
Publikováno v:
BMC Genomics, Vol 19, Iss 1, Pp 1-13 (2018)
Abstract Background Fusion genes are known to be drivers of many common cancers, so they are potential markers for diagnosis, prognosis or therapy response. The advent of paired-end RNA sequencing enhances our ability to discover fusion genes. While
Externí odkaz:
https://doaj.org/article/df652dd627844c9c902d7995a9fc77a6
Publikováno v:
Biology Direct, Vol 13, Iss 1, Pp 1-11 (2018)
Abstract Background Neuroblastoma is the most common pediatric malignancy with heterogeneous clinical behaviors, ranging from spontaneous regression to aggressive progression. Many studies have identified aberrations related to the pathogenesis and p
Externí odkaz:
https://doaj.org/article/0dbb648406c3455faa0537b2fa085755
Publikováno v:
Journal of Eastern European & Central Asian Research; 2023, Vol. 10 Issue 7, p1027-1036, 10p
Autor:
Quang Thinh Trac, Yudi Pawitan, Tian Mou, Tom Erkers, Päivi Östling, Anna Bohlin, Albin Österroos, Mattias Vesterlund, Rozbeh Jafari, Ioannis Siavelis, Helena Bäckvall, Santeri Kiviluoto, Lukas M. Orre, Mattias Rantalainen, Janne Lehtiö, Sören Lehmann, Olli Kallioniemi, Trung Nghia Vu
Publikováno v:
npj Precision Oncology. 7
Despite some encouraging successes, predicting the therapy response of acute myeloid leukemia (AML) patients remains highly challenging due to tumor heterogeneity. Here we aim to develop and validate MDREAM, a robust ensemble-based prediction model f