Zobrazeno 1 - 10
of 596
pro vyhledávání: '"Truncation method"'
Autor:
Xue Zhou, Xiangqing Liu
Publikováno v:
Electronic Journal of Differential Equations, Vol 2024, Iss 31,, Pp 1-13 (2024)
Externí odkaz:
https://doaj.org/article/fb724dffc37f414da3027931b7565700
Publikováno v:
发电技术, Vol 44, Iss 6, Pp 850-858 (2023)
A reduced order model for subsynchronous oscillation analysis of direct drive wind farm was studied, and a balanced truncation method based on alternating direction implicit (ADI) was proposed. Firstly, the mathematical model of wind farm was built a
Externí odkaz:
https://doaj.org/article/e2078b9a8823489081e02aaebc2a990d
Autor:
Shibo Liu
Publikováno v:
Mathematics, Vol 12, Iss 14, p 2233 (2024)
By applying Clark’s theorem as altered by Liu and Wang and the truncation method, we obtain a sequence of solutions for a Schrödinger–Poisson system −Δu+V(x)u+ϕu=f(u)inR3,−Δϕ=u2inR3 with negative energy. A similar result is also obtained
Externí odkaz:
https://doaj.org/article/348cb97416474b80bb3a2f36c7ed4c86
Publikováno v:
Remote Sensing, Vol 16, Iss 7, p 1300 (2024)
Single scattering in radiative transfer is separated into rapidly-varying and slowly-varying processes, where the rapidly-varying process (RVP) is mainly contributed by the diffraction effect. Accordingly, the diffraction decomposition order (DDO) me
Externí odkaz:
https://doaj.org/article/d99e7322f717423598d6e3473984e8d9
Autor:
Jin Li
Publikováno v:
AIMS Mathematics, Vol 8, Iss 4, Pp 8756-8771 (2023)
The barycentric rational collocation method for solving semi-infinite domain problems is presented. Following the barycentric interpolation method of rational polynomial and Chebyshev polynomial, matrix equation is obtained from discrete semi-infinit
Externí odkaz:
https://doaj.org/article/c2ec8f79a35d4b8ab94fa4b9c6e3c670
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
AIMS Mathematics, Vol 7, Iss 12, Pp 20660-20683 (2022)
In this work, we focus on the final value problem of an inverse problem for both linear and nonlinear biharmonic equations. The aim of this study is to provide a regularized method for the bi-harmonic equation, once the observed data are obtained at
Externí odkaz:
https://doaj.org/article/5b57e7b10ee5493e833dbf44c26b4655
Autor:
Nguyen Huy Tuan
Publikováno v:
Opuscula Mathematica, Vol 42, Iss 2, Pp 305-335 (2022)
The bi-parabolic equation has many practical significance in the field of heat transfer. The objective of the paper is to provide a regularized problem for bi-parabolic equation when the observed data are obtained in \(L^p\). We are interested in loo
Externí odkaz:
https://doaj.org/article/5eff5f0c2c7e46fbab62b50809c1a70d
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.