Zobrazeno 1 - 10
of 55
pro vyhledávání: '"Truc, Francoise"'
Autor:
Golenia, Sylvain, Truc, Françoise
In 1983, Klaus studied a class of potentials with bumps and computed the essential spectrum of the associated Schr{\"o}dinger operator with the help of some localisations at infinity. A key hypothesis is that the distance between two consecutive bump
Externí odkaz:
http://arxiv.org/abs/2003.11792
Autor:
Barseghyan, Diana, Truc, Francoise
The aim of the paper is to derive spectral estimates on the eigenvalue moments of the magnetic Schroedinger operators defined on the two-dimensional disk with a radially symmetric magnetic field and radially symmetric electric potential.
Comment
Comment
Externí odkaz:
http://arxiv.org/abs/1711.09754
Autor:
Barseghyan, Diana, Truc, Francoise
The aim of the paper is to derive spectral estimates on the eigenvalue moments of the magnetic Dirichlet Laplacian defined on the two-dimensional disk with a radially symmetric magnetic field.
Comment: 9 pages, 0 figures
Comment: 9 pages, 0 figures
Externí odkaz:
http://arxiv.org/abs/1608.04555
In this paper, we try to put the results of Smilansky and al. on "Topological resonances" on a mathematical basis.A key role in the asymptotic of resonances near the real axis for Quantum Graphs is played by the set of metrics for which there exists
Externí odkaz:
http://arxiv.org/abs/1604.01732
Autor:
Golénia, Sylvain, Truc, Françoise
We introduce the notion of discrete cusp for a weighted graph. In this context, we provethat the form-domain of the magnetic Laplacian and that of thenon-magnetic Laplacian can be different. We establish the emptiness of the essential spectrum and co
Externí odkaz:
http://arxiv.org/abs/1507.02638
Autor:
Milatovic, Ognjen, Truc, Francoise
We study $H=D^*D+V$, where $D$ is a first order elliptic differential operator acting on sections of a Hermitian vector bundle over a Riemannian manifold $M$, and $V$ is a Hermitian bundle endomorphism. In the case when $M$ is geodesically complete,
Externí odkaz:
http://arxiv.org/abs/1505.05362
Autor:
Truc, Francoise
Ce mémoire présente plusieurs résultats d'analyse spectrale, qui s'appuient pour la plupart sur le principe variationnel du min-max. L'objectif principal est d'établir une formule de type Weyl pour certains opérateurs de Schrôdinger. Cette form
Externí odkaz:
http://tel.archives-ouvertes.fr/tel-00326360
http://tel.archives-ouvertes.fr/docs/00/32/63/60/PDF/memoire.pdf
http://tel.archives-ouvertes.fr/docs/00/32/63/60/PDF/memoire.pdf
Autor:
Kovarik, Hynek, Truc, Francoise
We consider Schr\^odinger operators $H_\alpha$ given by equation (1.1) below. We study the asymptotic behavior of the spectral density $E(H_\alpha, \lambda)$ when $\lambda$ goes to $0$ and the $L^1\to L^\infty$ dispersive estimates associated to the
Externí odkaz:
http://arxiv.org/abs/1403.3624
Autor:
Morame, Abderemane, Truc, Francoise
We consider a Schr\"odinger operator with a Hermitian 2x2 matrix-valued potential which is lattice periodic and can be diagonalized smoothly on the whole $R^n.$ In the case of potential taking its minimum only on the lattice, we prove that the well-k
Externí odkaz:
http://arxiv.org/abs/1401.6447
Autor:
Milatovic, Ognjen, Truc, Francoise
Given a Hermitian vector bundle over an infinite weighted graph, we define the Laplacian associated to a unitary connection on this bundle and study the essential self-adjointness of a perturbation of this Laplacian by an operator-valued potential. A
Externí odkaz:
http://arxiv.org/abs/1307.1213