Zobrazeno 1 - 5
of 5
pro vyhledávání: '"Trost, Alexander Alois"'
Autor:
Trost, Alexander Alois
Publikováno v:
Bulletin of the London Mathematical Society (2023)
This paper shows that the group ${\rm SL}_n(R)$ is boundedly elementary generated for $n\geq 3$ and $R$ the ring of algebraic integers in a global function field. Contrary to previous statements for number fields and earlier statements for global fun
Externí odkaz:
http://arxiv.org/abs/2206.13958
Autor:
Trost, Alexander Alois
A recent paper by Polterovich, Shalom and Shem-Tov has shown that non-discrete, conjugation invariant norms on arithmetic Chevalley groups of higher rank give rise to very restricted topologies. Namely, such topologies always have profinite norm-comp
Externí odkaz:
http://arxiv.org/abs/2202.08319
Autor:
Trost, Alexander Alois
A group is called strongly bounded, if the speed with which it is generated by finitely many conjugacy classes has a positive, lower bound only dependent on the number of the conjugacy classes in question rather than the actual conjugacy classes. Ear
Externí odkaz:
http://arxiv.org/abs/2105.10972
Autor:
Trost, Alexander Alois
Publikováno v:
Journal of Algebra and Its Applications, Vol. 22, No. 08, 2350174 (2023)
This paper describes a bounded generation result concerning the minimal natural number $K$ such that for $Q(C_2,2R):=\{A\varepsilon_{\phi}(2x)A^{-1}|x\in R,A\in{\rm Sp}_4(R),\phi\in C_2\}$, one has $N_{C_2,2R}=\{X_1\cdots X_K|\forall 1\leq i\leq K:X_
Externí odkaz:
http://arxiv.org/abs/2101.02301
Autor:
Trost, Alexander Alois
Publikováno v:
Israel Journal of Mathematics, Volume 252, Pages 1-46 (2022)
This paper is concerned with the diameter of certain word norms on S-arithmetic split Chevalley groups. Such groups are well known to be boundedly generated by root elements. We prove that word metrics given by conjugacy classes on S-arithmetic split
Externí odkaz:
http://arxiv.org/abs/2004.05039