Zobrazeno 1 - 10
of 183
pro vyhledávání: '"Trombetti, Marco"'
Autor:
Ballester-Bolinches, Adolfo, Esteban-Romero, Ramón, Ferrara, Maria, Pérez-Calabuig, Vicent, Trombetti, Marco
The aim of this paper is to study supersoluble skew braces, a class of skew braces that encompasses all finite skew braces of square-free order. It turns out that finite supersoluble skew braces have Sylow towers, and that in an arbitrary supersolubl
Externí odkaz:
http://arxiv.org/abs/2402.18486
The subgroup lattice of a group is a great source of information about the structure of the group itself. The aim of this paper is to use a similar tool for studying profinite groups. In more detail, we study the lattices of closed or open subgroups
Externí odkaz:
http://arxiv.org/abs/2401.05937
The aim of this short note is to completely answer Questions 2.34 and 2.35 of arXiv:1806.01127. In particular, we show that a finite strong-nil skew brace $B$ of abelian type need not be right-nilpotent, but that this is the case if~$B$ is of nilpote
Externí odkaz:
http://arxiv.org/abs/2310.11123
Autor:
Ballester-Bolinches, Adolfo, Esteban-Romero, Ramón, Ferrara, Maria, Pérez-Calabuig, Vicent, Trombetti, Marco
Nipotency of skew braces is related to certain types of solutions of the Yang-Baxter equation. This paper delves into the study of centrally nilpotent skew braces. In particular, we study their torsion theory (Section 4.1) and we introduce an "index"
Externí odkaz:
http://arxiv.org/abs/2310.07474
Autor:
Ferrara, Maria, Trombetti, Marco
Let $\sigma=\{\sigma_j\,:\, j\in J\}$ be a partition of the set $\mathbb{P}$ of all prime numbers. A subgroup $X$ of a finite group $G$ is~\textit{$\sigma$-subnormal} in $G$ if there exists a chain of subgroups $$X=X_0\leq X_1\leq\ldots\leq X_n=G$$ s
Externí odkaz:
http://arxiv.org/abs/2310.03391
Autor:
Trombetti, Marco
Publikováno v:
Proc. Amer. Math. Soc. (2023)
The aim of this paper is to show that the structure skew brace associated with a finite non-degenerate solution of the Yang-Baxter equation is finitely presented.
Comment: arXiv admin note: text overlap with arXiv:2210.08598
Comment: arXiv admin note: text overlap with arXiv:2210.08598
Externí odkaz:
http://arxiv.org/abs/2307.05540
If $(X,r)$ is a finite non-degenerate set-theoretic solution of the Yang--Baxter equation, the additive group of the structure skew brace $G(X,r)$ is an $FC$-group, i.e. a group whose elements have finitely many conjugates. Moreover, its multiplicati
Externí odkaz:
http://arxiv.org/abs/2210.08598
Autor:
Trombetti, Marco
The aim of this short note is to provide a proof to a statement of Sierpi\'nski concerning the number of possible sums of a series (of type $\lambda<\aleph_1$) of arbitrary ordinal numbers.
Externí odkaz:
http://arxiv.org/abs/2201.07345
Autor:
Ferrara, Maria, Trombetti, Marco
Publikováno v:
In Journal of Algebra 15 May 2024 646:236-267
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.