Zobrazeno 1 - 10
of 1 118
pro vyhledávání: '"Trivedi, V"'
Autor:
MacEachern, L., Kermanshahi-pour, A., Mirmehrabi, Mahmoud, Ajiboye, L., Trivedi, V., Rohani, S., He, Q.
Publikováno v:
In The Journal of Supercritical Fluids October 2023 201
Publikováno v:
Malaysian Orthopaedic Journal, Vol 16, Iss 2, Pp 31-40 (2022)
INTRODUCTION: Osteoarthritis (OA) is estimated to be the fourth leading cause of disability in the general population. It probably is the most common disease of joints in adults throughout the world. Knee OA accounts for more than 80% of the disease
Externí odkaz:
https://doaj.org/article/394da247763a4abeb34c547b2df4fa64
Autor:
Mondal, Mandira, Trivedi, V.
For a toric pair $(X, D)$, where $X$ is a projective toric variety of dimension $d-1\geq 1$ and $D$ is a very ample $T$-Cartier divisor, we show that the Hilbert-Kunz density function $HKd(X, D)(\lambda)$ is the $d-1$ dimensional volume of ${\overlin
Externí odkaz:
http://arxiv.org/abs/1707.05959
Autor:
Trivedi, V.
Here we consider the set of bundles $\{V_n\}_{n\geq 1}$ associated to the plane trinomial curves $k[x,y,z]/(h)$. We prove that the Frobenius semistability behaviour of the reduction mod $p$ of $V_n$ is a function of the congruence class of $p$ modulo
Externí odkaz:
http://arxiv.org/abs/1701.07326
Autor:
Trivedi, V.
For a pair $(M, I)$, where $M$ is finitely generated graded module over a standard graded ring $R$ of dimension $d$, and $I$ is a graded ideal with $\ell(R/I) < \infty$, we introduce a new invariant $HKd(M, I)$ called the {\em Hilbert-Kunz density fu
Externí odkaz:
http://arxiv.org/abs/1510.03294
Publikováno v:
Clinical Ophthalmology, Vol Volume 15, Pp 1791-1797 (2021)
Vichar Trivedi,1 Yasaira Rodriguez Torres,2 Vaama Patel,2 Pradeepa Yoganathan2 1Wayne State University School of Medicine, Detroit, MI, USA; 2Department of Ophthalmology, Kresge Eye Institute, Wayne State University School of Medicine, Detroit, MI, U
Externí odkaz:
https://doaj.org/article/336d41f2fae54ae6bb452f607f1a1809
Autor:
Trivedi, V.
Here we compute Hilbert-Kunz functions of any nontrivial ruled surface over ${\bf P}^1_k$, with respect to all ample line bundles on it.
Comment: 20 pages, further minor revisions, more detailed explanations
Comment: 20 pages, further minor revisions, more detailed explanations
Externí odkaz:
http://arxiv.org/abs/1407.6120
Autor:
TRIVEDI, V.
Publikováno v:
Transactions of the American Mathematical Society, 2018 Dec 01. 370(12), 8403-8428.
Externí odkaz:
https://www.jstor.org/stable/90025816
Autor:
Mondal, Mandira, Trivedi, V.
Publikováno v:
In Journal of Algebra 15 February 2019 520:479-516
Autor:
Trivedi, V.
Here we prove that for a smooth projective variety $X$ of arbitrary dimension and for a vector bundle $E$ over $X$, the Harder-Narasimhan filtration of a Frobenius pull back of $E$ is a refinement of the Frobenius pull-back of the Harder-Narasimhan f
Externí odkaz:
http://arxiv.org/abs/1011.1971