Zobrazeno 1 - 10
of 98
pro vyhledávání: '"Tristan Rivière"'
Autor:
Tristan, Rivière
We prove that any smooth harmonic map from $S^3$ into $S^2$ of Morse index less or equal than $4$ has to be an harmonic morphism, that is the successive composition of an isometry of $S^3$, the Hopf fibration and an holomorphic map from ${\mathbb C}P
Externí odkaz:
http://arxiv.org/abs/1912.00473
Autor:
Tristan, Riviere
We found a new formulation to the Euler-Lagrange equation of the Willmore functional for immersed surfaces in ${\R}^m$. This new formulation of Willmore equation appears to be of divergence form, moreover, the non-linearities are made of jacobians. A
Externí odkaz:
http://arxiv.org/abs/math/0612526
Autor:
Tristan, Riviere
We succeed in writing 2-dimensional conformally invariant non-linear elliptic PDE (harmonic map equation, prescribed mean curvature equations...etc) in divergence form. This divergence free quantities generalize to target manifolds without symmetries
Externí odkaz:
http://arxiv.org/abs/math/0603380
Autor:
Alexis Michelat, Tristan Rivière
Publikováno v:
Journal of Geometric Analysis, 33 (1)
Generalising classical result of Müller and Šverák (J. Differ. Geom. 42(2), 229-258, 1995), we obtain a pointwise estimate of the conformal factor of sequences of conformal immersions from the unit disk of the complex plane of uniformly bounded to
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::450ba97c4e0e7cac90589d64e59404e3
https://hdl.handle.net/20.500.11850/582985
https://hdl.handle.net/20.500.11850/582985
Autor:
Tristan Rivière, Francesca Da Lio
Publikováno v:
Communications in Partial Differential Equations. 45:931-969
We present a class of pseudo-differential elliptic systems with anti-self-dual potentials on R satisfying compensation phenomena similar to the ones discovered by the second author for elliptic sys...
Autor:
Tristan Rivière
Publikováno v:
Astérisque. 422:499-543
Publikováno v:
Journal of Functional Analysis, 281 (9)
In this note, we prove a fractional version in 1-D of the Bourgain-Brezis inequality [1]. We show that such an inequality is equivalent to the fact that a holomorphic function f:D→C belongs to the Bergman space A2(D), namely f∈L2(D), if and only
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::33dc3bb53ed32fb9eaea286049539c9f
https://hdl.handle.net/20.500.11850/529971
https://hdl.handle.net/20.500.11850/529971
Autor:
Tristan Rivière
Publikováno v:
International Mathematics Research Notices. 2021:5651-5675
The goal of the present work is two-fold. First we prove the existence of a Hilbert manifold structure on the space of immersed oriented closed surfaces with three derivatives in $L^2$ in an arbitrary compact submanifold $M^m$ of an Euclidian space $
Autor:
Tristan Rivière, Alessandro Pigati
Publikováno v:
Duke Math. J. 169, no. 11 (2020), 2005-2044
Given any admissible $k$ -dimensional family of immersions of a given closed oriented surface into an arbitrary closed Riemannian manifold, we prove that the corresponding min-max width for the area is achieved by a smooth (possibly branched) immerse
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::904de170b68f54d04e62113fb8bd427a
https://projecteuclid.org/euclid.dmj/1594195214
https://projecteuclid.org/euclid.dmj/1594195214
Autor:
Tristan Rivière
Publikováno v:
Geometric Analysis ISBN: 9783030349523
We are giving a survey on some of the analysis methods from gauge theory developed in the last decades. We first cover Uhlenbeck’ s compensated compactness theory in critical 4 dimension for the Yang–Mills functional. As an application we present
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::3505dcb668eb139988cb15cd4dbf51df
https://doi.org/10.1007/978-3-030-34953-0_15
https://doi.org/10.1007/978-3-030-34953-0_15