Zobrazeno 1 - 8
of 8
pro vyhledávání: '"Tree of rational pairs"'
A slow triangle map with a segment of indifferent fixed points and a complete tree of rational pairs
We study the two-dimensional continued fraction algorithm introduced in \cite{garr} and the associated \emph{triangle map} $T$, defined on a triangle $\triangle\subset \R^2$. We introduce a slow version of the triangle map, the map $S$, which is ergo
Externí odkaz:
http://arxiv.org/abs/1904.07095
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
A slow triangle map with a segment of indifferent fixed points and a complete tree of rational pairs
Publikováno v:
Monatshefte für Mathematik. 194:1-40
We study the two-dimensional continued fraction algorithm introduced in \cite{garr} and the associated \emph{triangle map} $T$, defined on a triangle $\triangle\subset \R^2$. We introduce a slow version of the triangle map, the map $S$, which is ergo
Publikováno v:
Ramanujan Journal; Mar2024, Vol. 63 Issue 3, p873-915, 43p
Autor:
Bonanno, Claudio, Del Vigna, Alessio
In this paper we study the properties of the \emph{Triangular tree}, a complete tree of rational pairs introduced in \cite{cas}, in analogy with the main properties of the Farey tree (or Stern-Brocot tree). To our knowledge the Triangular tree is the
Externí odkaz:
http://arxiv.org/abs/2007.05958
Almost sure asymptotic behaviour of Birkhoff sums for infinite measure-preserving dynamical systems.
Autor:
Bonanno, Claudio, Schindler, Tanja I.
Publikováno v:
Discrete & Continuous Dynamical Systems: Series A; Nov2022, Vol. 42 Issue 11, p5541-5576, 36p
Publikováno v:
Monatshefte für Mathematik; Apr2021, Vol. 194 Issue 4, p767-787, 21p
Representation and coding of rational pairs on a Triangular tree and Diophantine approximation in ℝ²
Autor:
Alessio Del Vigna, Claudio Bonanno
In this paper we study the properties of the \emph{Triangular tree}, a complete tree of rational pairs introduced in \cite{cas}, in analogy with the main properties of the Farey tree (or Stern-Brocot tree). To our knowledge the Triangular tree is the
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::5aa2ceeb306298369d169592de5c94a4
https://hdl.handle.net/11568/1084716
https://hdl.handle.net/11568/1084716