Zobrazeno 1 - 10
of 27
pro vyhledávání: '"Trebuchet, Philippe"'
Autor:
Mourrain, Bernard, Trebuchet, Philippe
Publikováno v:
ISSAC (2014)
We extend the theory and the algorithms of Border Bases to systems of Laurent polynomial equations, defining "toric" roots. Instead of introducing new variables and new relations to saturate by the variable inverses, we propose a more efficient appro
Externí odkaz:
http://arxiv.org/abs/1406.0935
In this paper, we describe a new method to compute the minimum of a real polynomial function and the ideal defining the points which minimize this polynomial function, assuming that the minimizer ideal is zero-dimensional. Our method is a generalizat
Externí odkaz:
http://arxiv.org/abs/1301.5298
Autor:
Lasserre, Jean-Bernard, Laurent, Monique, Mourrain, Bernard, Rostalski, Philipp, Trébuchet, Philippe
In this paper, we describe new methods to compute the radical (resp. real radical) of an ideal, assuming it complex (resp. real) variety is finite. The aim is to combine approaches for solving a system of polynomial equations with dual methods which
Externí odkaz:
http://arxiv.org/abs/1112.3197
Autor:
Mourrain, Bernard, Trébuchet, Philippe
Publikováno v:
Theoretical Computer Science 409, 2 (2008) 229-240
This paper describes and analyzes a method for computing border bases of a zero-dimensional ideal $I$. The criterion used in the computation involves specific commutation polynomials and leads to an algorithm and an implementation extending the one p
Externí odkaz:
http://arxiv.org/abs/0812.0067
Let f1, ..., fs be a polynomial family in Q[X1,..., Xn] (with s less than n) of degree bounded by D. Suppose that f1, ..., fs generates a radical ideal, and defines a smooth algebraic variety V. Consider a projection P. We prove that the degree of th
Externí odkaz:
http://arxiv.org/abs/cs/0610051
Autor:
Lasserre, Jean-Bernard, Laurent, Monique, Mourrain, Bernard, Rostalski, Philipp, Trébuchet, Philippe
Publikováno v:
In Journal of Symbolic Computation April 2013 51:63-85
Autor:
Benadjila, Ryad, Michelizza, Arnauld, Renard, Mathieu, Thierry, Philippe, Trebuchet, Philippe
Publikováno v:
ACM International Conference Proceeding Series; 12/9/2019, p673-686, 14p
Autor:
van Der Hoeven, Joris, Lecerf, Grégoire, Mourrain, Bernard, Trebuchet, Philippe, Berthomieu, Jérémy, Diatta, Daouda Niang, Mantzaflaris, Angelos
Publikováno v:
ACM Communications in Computer Algebra
ACM Communications in Computer Algebra, 2012, 45 (3/4), pp.186-188. ⟨10.1145/2110170.2110180⟩
ACM Communications in Computer Algebra, Association for Computing Machinery (ACM), 2012, 45 (3/4), pp.186-188. ⟨10.1145/2110170.2110180⟩
ACM Communications in Computer Algebra, 2012, 45 (3/4), pp.186-188. ⟨10.1145/2110170.2110180⟩
ACM Communications in Computer Algebra, Association for Computing Machinery (ACM), 2012, 45 (3/4), pp.186-188. ⟨10.1145/2110170.2110180⟩
International audience
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::85bba8bada8c56e7ca7df426f3a0a08d
https://hal.science/hal-02350521
https://hal.science/hal-02350521
Publikováno v:
[Research Report] RR-6001, INRIA. 2006, pp.46
Let f1, ..., fs be a polynomial family in Q[X1,..., Xn] (with s less than n) of degree bounded by D. Suppose that f1, ..., fs generates a radical ideal, and defines a smooth algebraic variety V. Consider a projection P. We prove that the degree of th
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::975299d7ccbbe68e11dc382cbeebd712
https://inria.hal.science/inria-00105204v4/file/RR-6001.pdf
https://inria.hal.science/inria-00105204v4/file/RR-6001.pdf
Publikováno v:
[Research Report] RR-5071, INRIA. 2004
Let $(f_1, \ldots, f_s)$ be a polynomial family in $\Q[X_1, \ldots, X_n]$ (with $s\leq n-1$) of degree bounded by $D$, generating a radical ideal, and defining a smooth algebraic variety $\mathcal{V}\subset\C Consider a {\em generic} projection $\pi:
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::3760885fb0e91e145b971ef96f3a0129
https://inria.hal.science/inria-00071512/document
https://inria.hal.science/inria-00071512/document