Zobrazeno 1 - 10
of 99
pro vyhledávání: '"Trebeschi, Paola"'
We are concerned with nonlinear stability and existence of two-dimensional current-vortex sheets in ideal compressible magnetohydrodynamics. This is a nonlinear hyperbolic initial-boundary value problem with characteristic free boundary. It is well-k
Externí odkaz:
http://arxiv.org/abs/2305.02784
We study the free boundary problem for a plasma-vacuum interface in ideal incompressible magnetohydrodynamics. Unlike the classical statement when the vacuum magnetic field obeys the div-curl system of pre-Maxwell dynamics, to better understand the i
Externí odkaz:
http://arxiv.org/abs/1911.02327
We study the two-dimensional structural stability of shock waves in a compressible isentropic inviscid elastic fluid in the sense of the local-in-time existence and uniqueness of discontinuous shock front solutions of the equations of compressible el
Externí odkaz:
http://arxiv.org/abs/1903.08245
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Journal of Differential Equations 266 (2019), no. 9, 5397--5430
We show the short-time existence and nonlinear stability of vortex sheets for the nonisentropic compressible Euler equations in two spatial dimensions, based on the weakly linear stability result of Morando--Trebeschi (2008) [20]. The missing normal
Externí odkaz:
http://arxiv.org/abs/1808.09290
We are concerned with supersonic vortex sheets for the Euler equations of compressible inviscid fluids in two space dimensions. For the problem with constant coefficients we derive an evolution equation for the discontinuity front of the vortex sheet
Externí odkaz:
http://arxiv.org/abs/1806.06740
We prove the local-in-time existence of solutions with a contact discontinuity of the equations of ideal compressible magnetohydrodynamics (MHD) for 2D planar flows provided that the Rayleigh-Taylor sign condition $[\partial p/\partial N]<0$ on the j
Externí odkaz:
http://arxiv.org/abs/1612.04123
The paper is concerned with the free boundary problem for 2D current-vortex sheets in ideal incompressible magneto-hydrodynamics near the transition point between the linearized stability and instability. In order to study the dynamics of the discont
Externí odkaz:
http://arxiv.org/abs/1601.03674
The paper is concerned with the free boundary problem for 2D current-vortex sheets in ideal incompressible magneto-hydrodynamics near the transition point between the linearized stability and instability. In order to study the dynamics of the discont
Externí odkaz:
http://arxiv.org/abs/1601.03337
The paper is concerned with the free boundary problem for 2D current-vortex sheets in ideal incompressible magneto-hydrodynamics near the transition point between the linearized stability and instability. In order to study the dynamics of the discont
Externí odkaz:
http://arxiv.org/abs/1511.00811