Zobrazeno 1 - 6
of 6
pro vyhledávání: '"Tratamiento con ultrasonido"'
Producción Científica
Acoustic cavitation has been shown to cause physical damage and partial starch depolymerization in ultrasound-treated flours. However, the promising effects of this modification on bread-making performance of gluten-free
Acoustic cavitation has been shown to cause physical damage and partial starch depolymerization in ultrasound-treated flours. However, the promising effects of this modification on bread-making performance of gluten-free
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od______1514::22ea62cf0ec2c332abb1daa3ed6f6b33
https://doi.org/10.1016/j.lwt.2023.114950
https://doi.org/10.1016/j.lwt.2023.114950
Autor:
Lola Fariñas, Domingo Sancho-Knapik, Tomas Gomez Alvarez-Arenas, Eustaquio Gil-Pelegrín, José Javier Peguero-Pina
10 paginas, 9 figuras, 2 tablas
Plant-based measurements are recognized as key methods to obtain insightful data in the field. In general, they are labor-intensive and expensive. In this context, Non-Contact Resonant Ultrasonic Spectroscopy tech
Plant-based measurements are recognized as key methods to obtain insightful data in the field. In general, they are labor-intensive and expensive. In this context, Non-Contact Resonant Ultrasonic Spectroscopy tech
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::55847f471d1bac21f6ac76ef06b69180
http://hdl.handle.net/10532/5982
http://hdl.handle.net/10532/5982
Autor:
Tomas Gomez Alvarez-Arenas, Daniel Jimenez-Carretero, Domingo Sancho-Knapik, M.D. Fariñas, José Javier Peguero-Pina, Eustaquio Gil-Pelegrín
Publikováno v:
Plant Methods, Vol 15, Iss 1, Pp 1-10 (2019)
Zaguán. Repositorio Digital de la Universidad de Zaragoza
instname
Plant Methods
Digital.CSIC. Repositorio Institucional del CSIC
Zaguán: Repositorio Digital de la Universidad de Zaragoza
Universidad de Zaragoza
Repisalud
Instituto de Salud Carlos III (ISCIII)
Zaguán. Repositorio Digital de la Universidad de Zaragoza
instname
Plant Methods
Digital.CSIC. Repositorio Institucional del CSIC
Zaguán: Repositorio Digital de la Universidad de Zaragoza
Universidad de Zaragoza
Repisalud
Instituto de Salud Carlos III (ISCIII)
[Background] Non-contact resonant ultrasound spectroscopy (NC-RUS) has been proven as a reliable technique for the dynamic determination of leaf water status. It has been already tested in more than 50 plant species. In parallel, relative water conte
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::1bbe2bd2be8c43dd0f56ed877d0fa290
http://hdl.handle.net/10532/4889
http://hdl.handle.net/10532/4889
Autor:
Jorge Enrique López Galán, Jersson Ivan Figueroa Oviedo, Luz Marina Flórez Pardo, Angela Sofía Parra Paz
Publikováno v:
Bajpai, P. (2004). Biological bleaching of chemical pulps. Crit. Rev.Biotechnol., 24(1), 1-58.
Benazzi, T., Calgaroto, S., Astolfi, V., Rosa, C. D., Oliveira, J. V. & Mazutti, M. A. (2013). Pretreatment of sugarcane bagasse using supercritical carbon dioxide combined with ultrasound to improve the enzymatic hydrolysis. Enzyme Microb. Technol., 52(4-5), 247-250.
Bourbonnais, R. & Paice, M. (1992). Demethylation and delignification of kraft pulp by Trametes versicolor laccase in the presence of 2,2'-azinobis-(3-ethylbenzthiazoline-6-sulphonate). Appl. Microbiol. Biotechnol., 36(6), 823-827.
Bourbonnais, R., Paice, M., Freiermuth, B., Bodie, E. & Borneman, S. (1997). Reactivities of various mediators and laccases with Kraft pulp and lignin model compounds. Appl. Environ. Microbiol., 63(12), 4627-4632.
Camarero, S., Ibarra, D., Martínez, M. & Martínez, A. (2005). Lignin derived compounds as efficient laccase mediators for decolorization of different types of recalcitrant dyes. Appl. Environ. Microbiol., 71(4), 1775-1784.
Cañas, A., Alcalde, M., Plou, F., Martínez, M., Martínez, A. & Camarero, S. (2007). Transformation of polycyclic aromatic hydrocarbons by lacasse is strongly enhanced by phenolic compounds present in soil. Environ. Sci. Technol., 41(8), 2964-2971.
Cañas, A. & Camarero, S. (2010). Laccases and their natural mediators: Biotechnological tools for sustainable ecofriendly processes. Biotechnol. Adv., 28(6), 694-705.
Cenicaña. (2010). Boletines diarios de la red meteorológica automatizada-RMA. [Online]. [Accessed: 03-Jun-2014]. Available from:.
Elisashvili, V. & Kachlishvili, E. (2009). Physiological regulation of laccase and manganese peroxidase production by white-rot Basidiomycetes. J. Biotechnol., 144(1), 37-42.
Filson, P. B. & Dawson-Andoh, B. E. (2009). Sono-chemical preparation of cellulose nanocrrystals from lignocellulose derived materials. Bioresource Technol., 100(7), 2259-2264.
Flickinger, M. & Drew, S. (1999). Encyclopedia of bioprocess technology: Fermentation, biocatalysis and bioseparation. New York: John Wiley and Sons.
Fujian, X., Hongzhang, C. & Zuohu, L. (2001). Solid state production of lignin peroxidase (LiP) and manganese peroxidase (MnP) by Phanerochaete chrysosporium using steam-exploded straw as substrate. Bioresour. Technol., 80(2), 149-155.
Fujii, K., Uemura, M., Hayakawa, C., Funakawa, S. & Kosaki, T. (2013). Environmental control of lignin peroxidase, manganese peroxidase, and laccase activities in forest floor layers in humid Asia. Soil Biol. Biochem., 57: 109-115.
Garcia-Ubasart, J., Esteban, A., Vila, C., Roncero, M. B., Colom, J. F. & Vidal, T. (2011). Enzymatic treatments of pulp using laccase and hydrophobic compounds. Bioresour. Technol., 102(3), 2799-2803.
Hartree, E. F. (1972). Determination of protein: A modification of the Lowry method that gives a linear photometric response. Anal. Biochem., 48(2), 422-427.
Jeon, J. R., Murugesan, K., Kim, Y., Kim, E. & Chang, Y. (2008). Synergistic effect of laccase mediators on pentachlorophenol removal by Ganoderma lucidum laccase. Appl. Microbiol. Biotechnol., 81(4), 783-790.
Karp, S. G., Faraco, V., Amore, A., Birolo, L., Giangrande, C., Soccol, V. T., Pandey, A. & Soccol, C. R. (2012). Characterization of laccase isoforms produced by Pleurotus ostreatus in solid state fermentation of sugarcane bagasse. Bioresour. Technol., 114: 735-739.
Kudanga, T. & Le Roes-Hill, M. (2014). Laccase applications in biofuels production: Current status and future prospects. Appl. Microbiol. Biotechnol., 98(15), 6525-6542.
Liu, L., Lin, Z., Zheng, T., Lin, L., Zheng, C., Lin, Z., Wang, S. & Wang, Z. (2009). Fermentation optimization and characterization of the laccase from Pleurotus ostreatus strain 10969. Enzyme Microb. Technol., 44(6-7), 426-433.
Lowry, O. H., Rosebrough, N., Farr, A. L. & Randall, R. (1951). Protein measurement with the folin phenol reagent. J. Biol. Chem., 193: 265-275.
Maté, D., García-Burgos, C., García-Ruiz, E., Ballesteros, A.O., Camarero, S. & Alcalde, M. (2010). Laboratory evolution of high-redox potential laccases. Chem. Biol., 17(9), 1030-1041.
Morozova, O. V., Shumakovich, G. P., Shleev, S. V. & Yaropolov, Y. I. (2007). Laccase-mediator systems and their applications: A review. Appl. Biochem. Microbiol., 43(5), 523-535.
Oliveira, F. M. V., Pinheiro, I. O., Souto-Maior, A. M., Martin, C., Gonçalves, A. R. & Rocha, G. J. M. (2013). Industrialscale steam explosion pretreatment of sugarcane straw for enzymatic hydrolysis of cellulose for production of second generation ethanol and value-added products. Bioresource Technol., 130: 168-173.
Park, N. & Park, S. S. (2014). Purification and characterization of a novel laccase from Fomitopsis pinicola mycelia. Int. J. Biol. Macromol., 70: 583-589.
Peng, F., Peng, P., Xu, F. & Sun, R. C. (2012). Fractional purification and bioconversion of hemicelluloses. Biotechnol. Adv., 30(4), 879-903.
Piscitelli, A., Giardina, P., Mazzoni, C. & Sannia, G. (2005). Recombinant expression of Pleurotus ostreatus laccases in Kluyveromyces lactis and Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol., 29(4), 428-439.
Reddy, G. V., Ravindra-Babu, P., Komaraiah, P., Roy, K. R. R. M. & Kothari, L. (2003). Utilization of banana waste for the production of lignolytic and cellulolytic enzymes by solid substrate fermentation using two Pleurotus species (P. ostreatus and P. sajor-caju). Process Biochem., 38(10), 1457-1462.
Rocha, G. J. M., Gonçalves, A. R., Oliveira, B. R., Olivares, E. G. & Rossell, C. E. V. (2012). Steam explosion pretreatment reproduction and alkaline delignification reactions performed on a pilot scale with sugarcane bagasse for bioethanol production. Ind. Crop. Prod., 35(1), 274-279.
Rodríguez Couto, S. & Sanromán, M. (2005). Application of solid-state fermentation to lignolytic enzyme production. Biochem. Eng. J., 22(3), 211-219.
Salcedo, J. G., López, J. E. & Flórez, L. M. (2011). Evaluación de enzimas para la hidrólisis de residuos (hojas y cogollos) de la cosecha caña de azúcar. DYNA, 78(169), 182-190.
Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D. & Crocker, D. (2011). Determination of structural carbohydrates and lignin in biomass. Technical Report NREL/TP-510-42618. Golden, CO, 18 pp.
Sluiter, A., Ruiz, R., Scarlata, C., Sluiter, J. & Templeton, D. (2008). Determination of extractives in biomass. Technical Report NREL/TP-510-42619. Golden, CO, 12 pp.
Sun, J. X., Sun, R. C., Sun, X. F. & Su, Y. Q. (2004). Fractional and physico-chemical characterization of hemicelluloses from ultrasonic irradiated sugarcane bagasse. Carbohydr. Res., 339(2), 291-300.
Sun, R. & Tomkinson, J. (2002). Comparative study of lignins isolated by alkali and ultrasound-assisted alkali extractions from wheat straw. Ultrason. Sonochem., 9(2), 85-93.
Szczerbowski, D., Pitarelo, A. P., Zandoná Filho, A. & Pereira Ramos, L. (2014). Sugarcane biomass for biorefineries: Comparative composition of carbohydrate and non-carbohydrate components of bagasse and straw. Carbohydr. Polym., 114: 95-101.
TAPPI. (1999). Technical Association of the Pulp and Paper Industry. Kappa number of pulp. T 236 om-99. Canada, 4p.
Van Soest, P. J., Robertson, J. B. & Lewis, B. A. (1991). Methods for dietary fiber, neutral detergent fiber and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci., 74(10), 3583-3597.
Velmurugan, R. & Muthukumar, K. (2012). Ultrasoundassisted alkaline pretreatment of sugarcane bagasse for fermentable sugar production: Optimization through response surface methodology. Bioresource Technol., 112: 293-299.
Yachmenev, V., Condon, B., Klasson, T. & Lambert, A. (2009). Acceleration of the enzymatic hydrolysis of corn stover and sugar cane bagasse celluloses by low intensity uniform ultrasound. J. Biobased Mater. Bio., 3(1-7), 25-31.
Yaldagard, M., Mortazavi, S. A. & Tabatabaie, F. (2008). The effect of ultrasound in combination with thermal treatment on the germinated barley´s alpha-amylase activity. Korean J. Chem. Eng., 25(3), 517-523.
RED: Repositorio Educativo Digital UAO
Universidad Autónoma de Occidente
instacron:Universidad Autónoma de Occidente
Repositorio Institucional UAO
Bajpai, P. (2004). Biological bleaching of chemical pulps. Crit. Rev. Biotechnol., 24(1), 1-58
Benazzi, T., Calgaroto, S., Astolfi, V., Rosa, C. D., Oliveira, J. V. & Mazutti, M. A. (2013). Pretreatment of sugarcane bagasse using supercritical carbon dioxide combined with ultrasound to improve the enzymatic hydrolysis. Enzyme Microb. Technol., 52(4-5), 247-250
Bourbonnais, R. & Paice, M. (1992). Demethylation and delignification of kraft pulp by Trametes versicolor laccase in the presence of 2,2'-azinobis-(3-ethylbenzthiazoline-6-sulphonate). Appl. Microbiol. Biotechnol., 36(6), 823-827
Bourbonnais, R., Paice, M., Freiermuth, B., Bodie, E. & Borneman, S. (1997). Reactivities of various mediators and laccases with Kraft pulp and lignin model compounds. Appl. Environ. Microbiol., 63(12), 4627-4632
Camarero, S., Ibarra, D., Martínez, M. & Martínez, A. (2005). Lignin derived compounds as efficient laccase mediators for decolorization of different types of recalcitrant dyes. Appl. Environ. Microbiol., 71(4), 1775-1784
Cañas, A., Alcalde, M., Plou, F., Martínez, M., Martínez, A. & Camarero, S. (2007). Transformation of polycyclic aromatic hydrocarbons by lacasse is strongly enhanced by phenolic compounds present in soil. Environ. Sci. Technol., 41(8), 2964-2971
Cañas, A. & Camarero, S. (2010). Laccases and their natural mediators: Biotechnological tools for sustainable ecofriendly processes. Biotechnol. Adv., 28(6), 694-705
Cenicaña. (2010). Boletines diarios de la red meteorológica automatizada-RMA. [Online]. [Accessed: 03-Jun-2014]. Available from: http://www.cenicana.org/clima_/boletin_meteoro_diario.php
Elisashvili, V. & Kachlishvili, E. (2009). Physiological regulation of laccase and manganese peroxidase production by white-rot Basidiomycetes. J. Biotechnol., 144(1), 37-42
Filson, P. B. & Dawson-Andoh, B. E. (2009). Sono-chemical preparation of cellulose nanocrrystals from lignocellulose derived materials. Bioresource Technol., 100(7), 2259-2264
Flickinger, M. & Drew, S. (1999). Encyclopedia of bioprocess technology: Fermentation, biocatalysis and bioseparation. New York: John Wiley and Sons
Fujian, X., Hongzhang, C. & Zuohu, L. (2001). Solid state production of lignin peroxidase (LiP) and manganese peroxidase (MnP) by Phanerochaete chrysosporium using steam-exploded straw as substrate. Bioresour. Technol., 80(2), 149-155
Fujii, K., Uemura, M., Hayakawa, C., Funakawa, S. & Kosaki, T. (2013). Environmental control of lignin peroxidase, manganese peroxidase, and laccase activities in forest floor layers in humid Asia. Soil Biol. Biochem., 57: 109-115
Garcia-Ubasart, J., Esteban, A., Vila, C., Roncero, M. B., Colom, J. F. & Vidal, T. (2011). Enzymatic treatments of pulp using laccase and hydrophobic compounds. Bioresour. Technol., 102(3), 2799-2803
Hartree, E. F. (1972). Determination of protein: A modification of the Lowry method that gives a linear photometric response. Anal. Biochem., 48(2), 422-427
Jeon, J. R., Murugesan, K., Kim, Y., Kim, E. & Chang, Y. (2008). Synergistic effect of laccase mediators on pentachlorophenol removal by Ganoderma lucidum laccase. Appl. Microbiol. Biotechnol., 81(4), 783-790
Karp, S. G., Faraco, V., Amore, A., Birolo, L., Giangrande, C., Soccol, V. T., Pandey, A. & Soccol, C. R. (2012). Characterization of laccase isoforms produced by Pleurotus ostreatus in solid state fermentation of sugarcane bagasse. Bioresour. Technol., 114: 735-739
Kudanga, T. & Le Roes-Hill, M. (2014). Laccase applications in biofuels production: Current status and future prospects. Appl. Microbiol. Biotechnol., 98(15), 6525-6542
Liu, L., Lin, Z., Zheng, T., Lin, L., Zheng, C., Lin, Z., Wang, S. & Wang, Z. (2009). Fermentation optimization and characterization of the laccase from Pleurotus ostreatus strain 10969. Enzyme Microb. Technol., 44(6-7), 426-433
Lowry, O. H., Rosebrough, N., Farr, A. L. & Randall, R. (1951). Protein measurement with the folin phenol reagent. J. Biol. Chem., 193: 265-275
Maté, D., García-Burgos, C., García-Ruiz, E., Ballesteros, A.O., Camarero, S. & Alcalde, M. (2010). Laboratory evolution of high-redox potential laccases. Chem. Biol., 17(9), 1030-1041
Morozova, O. V., Shumakovich, G. P., Shleev, S. V. & Yaropolov, Y. I. (2007). Laccase-mediator systems and their applications: A review. Appl. Biochem. Microbiol., 43(5), 523-535
Oliveira, F. M. V., Pinheiro, I. O., Souto-Maior, A. M., Martin, C., Gonçalves, A. R. & Rocha, G. J. M. (2013). Industrialscale steam explosion pretreatment of sugarcane straw for enzymatic hydrolysis of cellulose for production of second generation ethanol and value-added products. Bioresource Technol., 130: 168-173
Park, N. & Park, S. S. (2014). Purification and characterization of a novel laccase from Fomitopsis pinicola mycelia. Int. J. Biol. Macromol., 70: 583-589
Peng, F., Peng, P., Xu, F. & Sun, R. C. (2012). Fractional purification and bioconversion of hemicelluloses. Biotechnol. Adv., 30(4), 879-903
Piscitelli, A., Giardina, P., Mazzoni, C. & Sannia, G. (2005). Recombinant expression of Pleurotus ostreatus laccases in Kluyveromyces lactis and Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol., 29(4), 428-439
Reddy, G. V., Ravindra-Babu, P., Komaraiah, P., Roy, K. R. R. M. & Kothari, L. (2003). Utilization of banana waste for the production of lignolytic and cellulolytic enzymes by solid substrate fermentation using two Pleurotus species (P. ostreatus and P. sajor-caju). Process Biochem., 38(10), 1457-1462
Rocha, G. J. M., Gonçalves, A. R., Oliveira, B. R., Olivares, E. G. & Rossell, C. E. V. (2012). Steam explosión pretreatment reproduction and alkaline delignification reactions performed on a pilot scale with sugarcane bagasse for bioethanol production. Ind. Crop. Prod., 35(1), 274-279
Rodríguez Couto, S. & Sanromán, M. (2005). Application of solid-state fermentation to lignolytic enzyme production. Biochem. Eng. J., 22(3), 211-219
Salcedo, J. G., López, J. E. & Flórez, L. M. (2011). Evaluación de enzimas para la hidrólisis de residuos (hojas y cogollos) de la cosecha caña de azúcar. DYNA, 78(169), 182-190
Sun, J. X., Sun, R. C., Sun, X. F. & Su, Y. Q. (2004). Fractional and physico-chemical characterization of hemicelluloses from ultrasonic irradiated sugarcane bagasse. Carbohydr. Res., 339(2), 291-300
Sun, R. & Tomkinson, J. (2002). Comparative study of lignins isolated by alkali and ultrasound-assisted alkali extractions from wheat straw. Ultrason. Sonochem., 9(2), 85-93
Szczerbowski, D., Pitarelo, A. P., Zandoná Filho, A. & Pereira Ramos, L. (2014). Sugarcane biomass for biorefineries: Comparative composition of carbohydrate and non-carbohydrate components of bagasse and straw. Carbohydr. Polym., 114: 95-101
Van Soest, P. J., Robertson, J. B. & Lewis, B. A. (1991). Methods for dietary fiber, neutral detergent fiber and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci., 74(10), 3583-3597
Velmurugan, R. & Muthukumar, K. (2012). Ultrasoundassisted alkaline pretreatment of sugarcane bagasse for fermentable sugar production: Optimization through response surface methodology. Bioresource Technol., 112: 293-299
Yachmenev, V., Condon, B., Klasson, T. & Lambert, A. (2009). Acceleration of the enzymatic hydrolysis of corn stover and sugar cane bagasse celluloses by low intensity uniform ultrasound. J. Biobased Mater. Bio., 3(1-7), 25-31
Yaldagard, M., Mortazavi, S. A. & Tabatabaie, F. (2008). The effect of ultrasound in combination with thermal treatment on the germinated barley´s alpha-amylase activity. Korean J. Chem. Eng., 25(3), 517-523
Redalyc
Benazzi, T., Calgaroto, S., Astolfi, V., Rosa, C. D., Oliveira, J. V. & Mazutti, M. A. (2013). Pretreatment of sugarcane bagasse using supercritical carbon dioxide combined with ultrasound to improve the enzymatic hydrolysis. Enzyme Microb. Technol., 52(4-5), 247-250.
Bourbonnais, R. & Paice, M. (1992). Demethylation and delignification of kraft pulp by Trametes versicolor laccase in the presence of 2,2'-azinobis-(3-ethylbenzthiazoline-6-sulphonate). Appl. Microbiol. Biotechnol., 36(6), 823-827.
Bourbonnais, R., Paice, M., Freiermuth, B., Bodie, E. & Borneman, S. (1997). Reactivities of various mediators and laccases with Kraft pulp and lignin model compounds. Appl. Environ. Microbiol., 63(12), 4627-4632.
Camarero, S., Ibarra, D., Martínez, M. & Martínez, A. (2005). Lignin derived compounds as efficient laccase mediators for decolorization of different types of recalcitrant dyes. Appl. Environ. Microbiol., 71(4), 1775-1784.
Cañas, A., Alcalde, M., Plou, F., Martínez, M., Martínez, A. & Camarero, S. (2007). Transformation of polycyclic aromatic hydrocarbons by lacasse is strongly enhanced by phenolic compounds present in soil. Environ. Sci. Technol., 41(8), 2964-2971.
Cañas, A. & Camarero, S. (2010). Laccases and their natural mediators: Biotechnological tools for sustainable ecofriendly processes. Biotechnol. Adv., 28(6), 694-705.
Cenicaña. (2010). Boletines diarios de la red meteorológica automatizada-RMA. [Online]. [Accessed: 03-Jun-2014]. Available from:
Elisashvili, V. & Kachlishvili, E. (2009). Physiological regulation of laccase and manganese peroxidase production by white-rot Basidiomycetes. J. Biotechnol., 144(1), 37-42.
Filson, P. B. & Dawson-Andoh, B. E. (2009). Sono-chemical preparation of cellulose nanocrrystals from lignocellulose derived materials. Bioresource Technol., 100(7), 2259-2264.
Flickinger, M. & Drew, S. (1999). Encyclopedia of bioprocess technology: Fermentation, biocatalysis and bioseparation. New York: John Wiley and Sons.
Fujian, X., Hongzhang, C. & Zuohu, L. (2001). Solid state production of lignin peroxidase (LiP) and manganese peroxidase (MnP) by Phanerochaete chrysosporium using steam-exploded straw as substrate. Bioresour. Technol., 80(2), 149-155.
Fujii, K., Uemura, M., Hayakawa, C., Funakawa, S. & Kosaki, T. (2013). Environmental control of lignin peroxidase, manganese peroxidase, and laccase activities in forest floor layers in humid Asia. Soil Biol. Biochem., 57: 109-115.
Garcia-Ubasart, J., Esteban, A., Vila, C., Roncero, M. B., Colom, J. F. & Vidal, T. (2011). Enzymatic treatments of pulp using laccase and hydrophobic compounds. Bioresour. Technol., 102(3), 2799-2803.
Hartree, E. F. (1972). Determination of protein: A modification of the Lowry method that gives a linear photometric response. Anal. Biochem., 48(2), 422-427.
Jeon, J. R., Murugesan, K., Kim, Y., Kim, E. & Chang, Y. (2008). Synergistic effect of laccase mediators on pentachlorophenol removal by Ganoderma lucidum laccase. Appl. Microbiol. Biotechnol., 81(4), 783-790.
Karp, S. G., Faraco, V., Amore, A., Birolo, L., Giangrande, C., Soccol, V. T., Pandey, A. & Soccol, C. R. (2012). Characterization of laccase isoforms produced by Pleurotus ostreatus in solid state fermentation of sugarcane bagasse. Bioresour. Technol., 114: 735-739.
Kudanga, T. & Le Roes-Hill, M. (2014). Laccase applications in biofuels production: Current status and future prospects. Appl. Microbiol. Biotechnol., 98(15), 6525-6542.
Liu, L., Lin, Z., Zheng, T., Lin, L., Zheng, C., Lin, Z., Wang, S. & Wang, Z. (2009). Fermentation optimization and characterization of the laccase from Pleurotus ostreatus strain 10969. Enzyme Microb. Technol., 44(6-7), 426-433.
Lowry, O. H., Rosebrough, N., Farr, A. L. & Randall, R. (1951). Protein measurement with the folin phenol reagent. J. Biol. Chem., 193: 265-275.
Maté, D., García-Burgos, C., García-Ruiz, E., Ballesteros, A.O., Camarero, S. & Alcalde, M. (2010). Laboratory evolution of high-redox potential laccases. Chem. Biol., 17(9), 1030-1041.
Morozova, O. V., Shumakovich, G. P., Shleev, S. V. & Yaropolov, Y. I. (2007). Laccase-mediator systems and their applications: A review. Appl. Biochem. Microbiol., 43(5), 523-535.
Oliveira, F. M. V., Pinheiro, I. O., Souto-Maior, A. M., Martin, C., Gonçalves, A. R. & Rocha, G. J. M. (2013). Industrialscale steam explosion pretreatment of sugarcane straw for enzymatic hydrolysis of cellulose for production of second generation ethanol and value-added products. Bioresource Technol., 130: 168-173.
Park, N. & Park, S. S. (2014). Purification and characterization of a novel laccase from Fomitopsis pinicola mycelia. Int. J. Biol. Macromol., 70: 583-589.
Peng, F., Peng, P., Xu, F. & Sun, R. C. (2012). Fractional purification and bioconversion of hemicelluloses. Biotechnol. Adv., 30(4), 879-903.
Piscitelli, A., Giardina, P., Mazzoni, C. & Sannia, G. (2005). Recombinant expression of Pleurotus ostreatus laccases in Kluyveromyces lactis and Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol., 29(4), 428-439.
Reddy, G. V., Ravindra-Babu, P., Komaraiah, P., Roy, K. R. R. M. & Kothari, L. (2003). Utilization of banana waste for the production of lignolytic and cellulolytic enzymes by solid substrate fermentation using two Pleurotus species (P. ostreatus and P. sajor-caju). Process Biochem., 38(10), 1457-1462.
Rocha, G. J. M., Gonçalves, A. R., Oliveira, B. R., Olivares, E. G. & Rossell, C. E. V. (2012). Steam explosion pretreatment reproduction and alkaline delignification reactions performed on a pilot scale with sugarcane bagasse for bioethanol production. Ind. Crop. Prod., 35(1), 274-279.
Rodríguez Couto, S. & Sanromán, M. (2005). Application of solid-state fermentation to lignolytic enzyme production. Biochem. Eng. J., 22(3), 211-219.
Salcedo, J. G., López, J. E. & Flórez, L. M. (2011). Evaluación de enzimas para la hidrólisis de residuos (hojas y cogollos) de la cosecha caña de azúcar. DYNA, 78(169), 182-190.
Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D. & Crocker, D. (2011). Determination of structural carbohydrates and lignin in biomass. Technical Report NREL/TP-510-42618. Golden, CO, 18 pp.
Sluiter, A., Ruiz, R., Scarlata, C., Sluiter, J. & Templeton, D. (2008). Determination of extractives in biomass. Technical Report NREL/TP-510-42619. Golden, CO, 12 pp.
Sun, J. X., Sun, R. C., Sun, X. F. & Su, Y. Q. (2004). Fractional and physico-chemical characterization of hemicelluloses from ultrasonic irradiated sugarcane bagasse. Carbohydr. Res., 339(2), 291-300.
Sun, R. & Tomkinson, J. (2002). Comparative study of lignins isolated by alkali and ultrasound-assisted alkali extractions from wheat straw. Ultrason. Sonochem., 9(2), 85-93.
Szczerbowski, D., Pitarelo, A. P., Zandoná Filho, A. & Pereira Ramos, L. (2014). Sugarcane biomass for biorefineries: Comparative composition of carbohydrate and non-carbohydrate components of bagasse and straw. Carbohydr. Polym., 114: 95-101.
TAPPI. (1999). Technical Association of the Pulp and Paper Industry. Kappa number of pulp. T 236 om-99. Canada, 4p.
Van Soest, P. J., Robertson, J. B. & Lewis, B. A. (1991). Methods for dietary fiber, neutral detergent fiber and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci., 74(10), 3583-3597.
Velmurugan, R. & Muthukumar, K. (2012). Ultrasoundassisted alkaline pretreatment of sugarcane bagasse for fermentable sugar production: Optimization through response surface methodology. Bioresource Technol., 112: 293-299.
Yachmenev, V., Condon, B., Klasson, T. & Lambert, A. (2009). Acceleration of the enzymatic hydrolysis of corn stover and sugar cane bagasse celluloses by low intensity uniform ultrasound. J. Biobased Mater. Bio., 3(1-7), 25-31.
Yaldagard, M., Mortazavi, S. A. & Tabatabaie, F. (2008). The effect of ultrasound in combination with thermal treatment on the germinated barley´s alpha-amylase activity. Korean J. Chem. Eng., 25(3), 517-523.
RED: Repositorio Educativo Digital UAO
Universidad Autónoma de Occidente
instacron:Universidad Autónoma de Occidente
Repositorio Institucional UAO
Bajpai, P. (2004). Biological bleaching of chemical pulps. Crit. Rev. Biotechnol., 24(1), 1-58
Benazzi, T., Calgaroto, S., Astolfi, V., Rosa, C. D., Oliveira, J. V. & Mazutti, M. A. (2013). Pretreatment of sugarcane bagasse using supercritical carbon dioxide combined with ultrasound to improve the enzymatic hydrolysis. Enzyme Microb. Technol., 52(4-5), 247-250
Bourbonnais, R. & Paice, M. (1992). Demethylation and delignification of kraft pulp by Trametes versicolor laccase in the presence of 2,2'-azinobis-(3-ethylbenzthiazoline-6-sulphonate). Appl. Microbiol. Biotechnol., 36(6), 823-827
Bourbonnais, R., Paice, M., Freiermuth, B., Bodie, E. & Borneman, S. (1997). Reactivities of various mediators and laccases with Kraft pulp and lignin model compounds. Appl. Environ. Microbiol., 63(12), 4627-4632
Camarero, S., Ibarra, D., Martínez, M. & Martínez, A. (2005). Lignin derived compounds as efficient laccase mediators for decolorization of different types of recalcitrant dyes. Appl. Environ. Microbiol., 71(4), 1775-1784
Cañas, A., Alcalde, M., Plou, F., Martínez, M., Martínez, A. & Camarero, S. (2007). Transformation of polycyclic aromatic hydrocarbons by lacasse is strongly enhanced by phenolic compounds present in soil. Environ. Sci. Technol., 41(8), 2964-2971
Cañas, A. & Camarero, S. (2010). Laccases and their natural mediators: Biotechnological tools for sustainable ecofriendly processes. Biotechnol. Adv., 28(6), 694-705
Cenicaña. (2010). Boletines diarios de la red meteorológica automatizada-RMA. [Online]. [Accessed: 03-Jun-2014]. Available from: http://www.cenicana.org/clima_/boletin_meteoro_diario.php
Elisashvili, V. & Kachlishvili, E. (2009). Physiological regulation of laccase and manganese peroxidase production by white-rot Basidiomycetes. J. Biotechnol., 144(1), 37-42
Filson, P. B. & Dawson-Andoh, B. E. (2009). Sono-chemical preparation of cellulose nanocrrystals from lignocellulose derived materials. Bioresource Technol., 100(7), 2259-2264
Flickinger, M. & Drew, S. (1999). Encyclopedia of bioprocess technology: Fermentation, biocatalysis and bioseparation. New York: John Wiley and Sons
Fujian, X., Hongzhang, C. & Zuohu, L. (2001). Solid state production of lignin peroxidase (LiP) and manganese peroxidase (MnP) by Phanerochaete chrysosporium using steam-exploded straw as substrate. Bioresour. Technol., 80(2), 149-155
Fujii, K., Uemura, M., Hayakawa, C., Funakawa, S. & Kosaki, T. (2013). Environmental control of lignin peroxidase, manganese peroxidase, and laccase activities in forest floor layers in humid Asia. Soil Biol. Biochem., 57: 109-115
Garcia-Ubasart, J., Esteban, A., Vila, C., Roncero, M. B., Colom, J. F. & Vidal, T. (2011). Enzymatic treatments of pulp using laccase and hydrophobic compounds. Bioresour. Technol., 102(3), 2799-2803
Hartree, E. F. (1972). Determination of protein: A modification of the Lowry method that gives a linear photometric response. Anal. Biochem., 48(2), 422-427
Jeon, J. R., Murugesan, K., Kim, Y., Kim, E. & Chang, Y. (2008). Synergistic effect of laccase mediators on pentachlorophenol removal by Ganoderma lucidum laccase. Appl. Microbiol. Biotechnol., 81(4), 783-790
Karp, S. G., Faraco, V., Amore, A., Birolo, L., Giangrande, C., Soccol, V. T., Pandey, A. & Soccol, C. R. (2012). Characterization of laccase isoforms produced by Pleurotus ostreatus in solid state fermentation of sugarcane bagasse. Bioresour. Technol., 114: 735-739
Kudanga, T. & Le Roes-Hill, M. (2014). Laccase applications in biofuels production: Current status and future prospects. Appl. Microbiol. Biotechnol., 98(15), 6525-6542
Liu, L., Lin, Z., Zheng, T., Lin, L., Zheng, C., Lin, Z., Wang, S. & Wang, Z. (2009). Fermentation optimization and characterization of the laccase from Pleurotus ostreatus strain 10969. Enzyme Microb. Technol., 44(6-7), 426-433
Lowry, O. H., Rosebrough, N., Farr, A. L. & Randall, R. (1951). Protein measurement with the folin phenol reagent. J. Biol. Chem., 193: 265-275
Maté, D., García-Burgos, C., García-Ruiz, E., Ballesteros, A.O., Camarero, S. & Alcalde, M. (2010). Laboratory evolution of high-redox potential laccases. Chem. Biol., 17(9), 1030-1041
Morozova, O. V., Shumakovich, G. P., Shleev, S. V. & Yaropolov, Y. I. (2007). Laccase-mediator systems and their applications: A review. Appl. Biochem. Microbiol., 43(5), 523-535
Oliveira, F. M. V., Pinheiro, I. O., Souto-Maior, A. M., Martin, C., Gonçalves, A. R. & Rocha, G. J. M. (2013). Industrialscale steam explosion pretreatment of sugarcane straw for enzymatic hydrolysis of cellulose for production of second generation ethanol and value-added products. Bioresource Technol., 130: 168-173
Park, N. & Park, S. S. (2014). Purification and characterization of a novel laccase from Fomitopsis pinicola mycelia. Int. J. Biol. Macromol., 70: 583-589
Peng, F., Peng, P., Xu, F. & Sun, R. C. (2012). Fractional purification and bioconversion of hemicelluloses. Biotechnol. Adv., 30(4), 879-903
Piscitelli, A., Giardina, P., Mazzoni, C. & Sannia, G. (2005). Recombinant expression of Pleurotus ostreatus laccases in Kluyveromyces lactis and Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol., 29(4), 428-439
Reddy, G. V., Ravindra-Babu, P., Komaraiah, P., Roy, K. R. R. M. & Kothari, L. (2003). Utilization of banana waste for the production of lignolytic and cellulolytic enzymes by solid substrate fermentation using two Pleurotus species (P. ostreatus and P. sajor-caju). Process Biochem., 38(10), 1457-1462
Rocha, G. J. M., Gonçalves, A. R., Oliveira, B. R., Olivares, E. G. & Rossell, C. E. V. (2012). Steam explosión pretreatment reproduction and alkaline delignification reactions performed on a pilot scale with sugarcane bagasse for bioethanol production. Ind. Crop. Prod., 35(1), 274-279
Rodríguez Couto, S. & Sanromán, M. (2005). Application of solid-state fermentation to lignolytic enzyme production. Biochem. Eng. J., 22(3), 211-219
Salcedo, J. G., López, J. E. & Flórez, L. M. (2011). Evaluación de enzimas para la hidrólisis de residuos (hojas y cogollos) de la cosecha caña de azúcar. DYNA, 78(169), 182-190
Sun, J. X., Sun, R. C., Sun, X. F. & Su, Y. Q. (2004). Fractional and physico-chemical characterization of hemicelluloses from ultrasonic irradiated sugarcane bagasse. Carbohydr. Res., 339(2), 291-300
Sun, R. & Tomkinson, J. (2002). Comparative study of lignins isolated by alkali and ultrasound-assisted alkali extractions from wheat straw. Ultrason. Sonochem., 9(2), 85-93
Szczerbowski, D., Pitarelo, A. P., Zandoná Filho, A. & Pereira Ramos, L. (2014). Sugarcane biomass for biorefineries: Comparative composition of carbohydrate and non-carbohydrate components of bagasse and straw. Carbohydr. Polym., 114: 95-101
Van Soest, P. J., Robertson, J. B. & Lewis, B. A. (1991). Methods for dietary fiber, neutral detergent fiber and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci., 74(10), 3583-3597
Velmurugan, R. & Muthukumar, K. (2012). Ultrasoundassisted alkaline pretreatment of sugarcane bagasse for fermentable sugar production: Optimization through response surface methodology. Bioresource Technol., 112: 293-299
Yachmenev, V., Condon, B., Klasson, T. & Lambert, A. (2009). Acceleration of the enzymatic hydrolysis of corn stover and sugar cane bagasse celluloses by low intensity uniform ultrasound. J. Biobased Mater. Bio., 3(1-7), 25-31
Yaldagard, M., Mortazavi, S. A. & Tabatabaie, F. (2008). The effect of ultrasound in combination with thermal treatment on the germinated barley´s alpha-amylase activity. Korean J. Chem. Eng., 25(3), 517-523
Redalyc
Los residuos industriales son recursos que generan una seguridad energética regional, pero ellos no han sido suficientemente valorizados. En el sur de Colombia, el sector de la caña de azúcar produce aproximadamente 9´000 000 T/año de residuos,
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::9e104fafcf94b0eaa5796b715b3c4090
http://www.scielo.org.co/scielo.php?script=sci_abstract&pid=S0122-53832015000200007
http://www.scielo.org.co/scielo.php?script=sci_abstract&pid=S0122-53832015000200007
Autor:
Flórez-Pardo, Luz-Marina, Parra-Paz, Angela-Sofía, López-Galán, Jorge-Enrique, Figueroa-Oviedo, Jersson-Ivan
Publikováno v:
CT&F-Ciencia, Tecnología y Futuro, Volume: 6, Issue: 2, Pages: 81-92, Published: JUL 2015
Industrial residues are resources that generate regional energy security but they have not been sufficiently valued. In southern Colombia, the sugar cane sector produces approximately 9'000 000 T/year of residues, mostly represented by tops and leave
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od_______618::be65bbed87b77a9b7ee2d1e0787b0fdb
http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0122-53832015000200007&lng=en&tlng=en
http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0122-53832015000200007&lng=en&tlng=en
Autor:
Luz-Marina Flórez-Pardo, Angela-Sofía Parra-Paz, Jorge-Enrique López-Galán, Jersson-Ivan Figueroa-Oviedo
Publikováno v:
CT&F Ciencia, Tecnología & Futuro, Vol 6, Iss 2, Pp 81-92
Industrial residues are resources that generate regional energy security but they have not been sufficiently valued. In southern Colombia, the sugar cane sector produces approximately 9'000 000 T/year of residues, mostly represented by tops and leave
Externí odkaz:
https://doaj.org/article/6f9d54695a07416392b63a101e394027