Zobrazeno 1 - 10
of 23
pro vyhledávání: '"Traoré, Abraham"'
Autor:
Yaméogo, Adama Ouédraogo, Ouiya, Pascal, Traoré, Abraham Seydoux, Sawadogo, Saga, Naba, Séta, Rousse, Sonia, Macouin, Mélina
Publikováno v:
In Journal of African Earth Sciences December 2023 208
This paper presents a distance-based discriminative framework for learning with probability distributions. Instead of using kernel mean embeddings or generalized radial basis kernels, we introduce embeddings based on dissimilarity of distributions to
Externí odkaz:
http://arxiv.org/abs/1803.00250
Publikováno v:
In Neurocomputing 27 November 2019 368:163-179
Autor:
Sawadogo, Sâga, Naba, Séta, Ilboudo, Hermann, Traoré, Abraham Seydoux, Nakolendoussé, Samuel, Lompo, Martin
Publikováno v:
In Journal of African Earth Sciences December 2018 148:59-68
Autor:
Ilboudo, Hermann, Sawadogo, Sâga, Traoré, Abraham Seydoux, Sama, Martial, Wenmenga, Urbain, Lompo, Martin
Publikováno v:
In Journal of African Earth Sciences December 2018 148:52-58
Nonnegative Tucker decomposition is a powerful tool for the extraction of nonnegative and meaningful latent components from a positive multidimensional data (or tensor) while preserving the natural multilinear structure. However, as a tensor data has
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::8efd08dd91ece42f01afd82a980e0dcd
https://hal.archives-ouvertes.fr/hal-02288293/document
https://hal.archives-ouvertes.fr/hal-02288293/document
Publikováno v:
Conference sur l'apprentissage statistique
Conference sur l'apprentissage statistique, Jun 2018, Rouen, France
Conference sur l'apprentissage statistique, Jun 2018, Rouen, France
International audience; Nous présentons un nouvel algorithme de décomposition de tenseurs (données multimodales) pour l'inférence de facteurs latents dans un environne-ment dynamique (les données sont acquises demanì ere séquentielle au fil du
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::5ec6792bc746db514df7afa74a1bdd1c
https://hal.archives-ouvertes.fr/hal-01811447/file/PapercapVersionfinaleAbrahamMaximeAlain.pdf
https://hal.archives-ouvertes.fr/hal-01811447/file/PapercapVersionfinaleAbrahamMaximeAlain.pdf
Publikováno v:
Proceedings of European Symposium on Artificial Neural Networks
European Symposium on Artificial Neural Networks
European Symposium on Artificial Neural Networks, 2018, Bruges, Belgium
European Symposium on Artificial Neural Networks
European Symposium on Artificial Neural Networks, 2018, Bruges, Belgium
International audience; A challenge faced by dictionary learning and non-negative matrix factorization is to efficiently model, in a context of feature learning, temporal patterns for data presenting sequential (two-dimensional) structure such as spe
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::c793c61607d63d09c85702bc0128935a
https://hal.archives-ouvertes.fr/hal-01721396
https://hal.archives-ouvertes.fr/hal-01721396
Autor:
Traoré, Abraham
Dans ce travail, on s'intéresse à des outils mathématiques spéciaux appelés tenseurs qui sont formellement définis comme des tableaux multidimensionnels définis sur le produit tensoriel d'espaces vectoriels (chaque espace vectoriel étant muni
Externí odkaz:
http://www.theses.fr/2019NORMR068/document
Autor:
Traoré, Abraham
In this work, we are interested in special mathematical tools called tensors, that are multidimensional arrays defined on tensor product of some vector spaces, each of which has its own coordinate system and the number of spaces involved in this prod
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od_______166::c9f8b30e950b35197274c533326e092e
https://theses.hal.science/tel-02415573
https://theses.hal.science/tel-02415573