Zobrazeno 1 - 10
of 395
pro vyhledávání: '"Transcendence degree"'
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Elek, Gábor
Publikováno v:
Proceedings of the American Mathematical Society, 2006 Mar 01. 134(3), 637-644.
Externí odkaz:
https://www.jstor.org/stable/4098409
Autor:
Zhang, James J.
Publikováno v:
Transactions of the American Mathematical Society, 1996 Jul 01. 348(7), 2867-2899.
Externí odkaz:
https://www.jstor.org/stable/2155274
Autor:
Eva Trojovská, Pavel Trojovský
Publikováno v:
Mathematics, Vol 9, Iss 7, p 717 (2021)
We give three consequences of Schanuel’s Conjecture. The first is that P(e)Q(e) and P(π)Q(π) are transcendental, for any non-constant polynomials P(x),Q(x)∈Q¯[x]. The second is that π≠αβ, for any algebraic numbers α and β. The third is
Externí odkaz:
https://doaj.org/article/97b1f940a9d44f56975b75079a3aedd8
Autor:
Damian Rössler
Publikováno v:
Contemporary Mathematics. :89-96
We give effective upper bounds for the number of purely inseparable points on non isotrivial curves over function fields of positive characteristic and of transcendence degree one. These bounds depend on the genus of the curve, the genus of the funct
Autor:
Oksana S. Yakimova
Publikováno v:
Mathematical Research Letters. 28:907-924
Autor:
Dac-Nhan-Tam Nguyen, Dragos Ghioca
Publikováno v:
Bulletin of the Australian Mathematical Society. 103:418-427
We provide a direct proof of a Bogomolov-type statement for affine varieties V defined over function fields K of finite transcendence degree over an arbitrary field k, generalising a previous result (obtained through a different approach) of the firs
Autor:
Helbert Venegas, Oswaldo Lezama
Publikováno v:
São Paulo Journal of Mathematical Sciences. 14:207-222
The classical Gelfand–Kirillov dimension for algebras over fields has been extended recently by J. Bell and J.J Zhang to algebras over commutative domains. However, the behavior of this new notion has not been enough investigated for the principal
Publikováno v:
Journal of the Institute of Mathematics of Jussieu. 20:1931-1946
We solve the inverse differential Galois problem over differential fields with a large field of constants of infinite transcendence degree over ${\mathbb Q}$. More generally, we show that over such a field, every split differential embedding problem
Autor:
Gorchinskiy Sergey, Guletskiĭ Vladimir
Publikováno v:
Open Mathematics, Vol 10, Iss 2, Pp 559-568 (2012)
Externí odkaz:
https://doaj.org/article/216a4835121c4318b8a6551539dad193