Zobrazeno 1 - 5
of 5
pro vyhledávání: '"Tracy D. Lemmond"'
Autor:
K Carlisle, C N Paulson, Timothy L. Houck, Joshua D. Kuntz, B Corey, Salvador M. Aceves, C Bennett, Carol Meyers, B L Guidry, B Y Chen, Christopher M. Spadaccini, J Kotovsky, Michael A. Puso, Daniel A. White, James V. Candy, Joel V. Bernier, D. Chen, Adam M. Conway, Rebecca J. Nikolic, M A Lane, Elizabeth K. Wheeler, J I Lin, Todd H. Weisgraber, Tracy D. Lemmond, Dietrich Dehlinger, B M Ng, Tang, R P Mariella, A K Foudray
This report summarizes key research, development, and technology advancements in Lawrence Livermore National Laboratory's Engineering Directorate for FY2010. These efforts exemplify Engineering's nearly 60-year history of developing and applying the
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::98f9980250b122973d7fdb1ce57c0ae1
https://doi.org/10.2172/1018760
https://doi.org/10.2172/1018760
Publikováno v:
KDD
The generalization error, or probability of misclassification, of ensemble classifiers has been shown to be bounded above by a function of the mean correlation between the constituent (i.e., base) classifiers and their average strength. This bound su
Autor:
Richard C. Montesanti, Jerry I. Lin, Rebecca J. Nikolic, Todd H. Weisgraber, Harry E. Martz, Robin Miles, Carol Meyers, James S. Stolken, Salvador M. Aceves, Christopher M. Spadaccini, Sean K. Lehman, Brenda Ng, Satinderpall S. Pannu, Michael A. Puso, John E. Heebner, Jerome Solberg, Gabriela G. Loots, Tracy D. Lemmond, Bob Corey, Klint A. Rose, R. Seugling, Joh M. Dzenitis, Joel V. Bernier, R. Sharpe, Nathan R. Barton, Timothy L. Houck, Michael J. King, James V. Candy, Vincent Tang, J.N. Florando, Adam M. Conway, Daniel A. White
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::6373e90aaf6a77a72ca358fceecc462a
https://doi.org/10.2172/1127193
https://doi.org/10.2172/1127193
Publikováno v:
Annals of Information Systems ISBN: 9781441912794
Classification technologies have become increasingly vital to information analysis systems that rely upon collected data to make predictions or informed decisions. Many approaches have been developed, but one of the most successful in recent times is
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::6f84b8a79226b54b9e860cb2c8a006f8
https://doi.org/10.1007/978-1-4419-1280-0_6
https://doi.org/10.1007/978-1-4419-1280-0_6
Publikováno v:
CIDM
This paper presents the Cost-Sensitive Random Subspace Support Vector Classifier (CS-RS-SVC), a new learning algorithm that combines random subspace sampling and bagging with Cost-Sensitive Support Vector Classifiers to more effectively address detec