Zobrazeno 1 - 10
of 22
pro vyhledávání: '"Touati, Arthur"'
We construct initial data suitable for the Kerr stability conjecture, that is, solutions to the constraint equations on a spacelike hypersurface with boundary entering the black hole horizon that are arbitrarily decaying perturbations of a Kerr initi
Externí odkaz:
http://arxiv.org/abs/2405.02071
Autor:
Touati, Arthur
Given a generic solution $\mathbf{g}_0$ of the Einstein-null dusts system without restriction on the number of dusts, we construct families of solutions $(\mathbf{g}_\lambda)_{\lambda\in(0,1]}$ of the Einstein vacuum equations such that $\mathbf{g}_\
Externí odkaz:
http://arxiv.org/abs/2402.17530
We construct and parametrize solutions to the constraint equations of general relativity in a neighborhood of Minkowski spacetime with arbitrary prescribed decay properties at infinity. We thus provide a large class of initial data for the results on
Externí odkaz:
http://arxiv.org/abs/2401.14353
Autor:
Touati, Arthur
We construct high-frequency initial data for the Einstein vacuum equations in dimension 3+1 by solving the constraint equations on $\mathbb{R}^3$. Our family of solutions $(\bar{g}_\lambda,K_\lambda)_{\lambda\in(0,1]}$ is defined through a high-frequ
Externí odkaz:
http://arxiv.org/abs/2206.13062
Autor:
Touati, Arthur
We show the stability of the geometric optics approximation in general relativity by constructing a family $(g_\lambda)_{\lambda\in(0,1]}$ of high-frequency metrics solutions to the Einstein vacuum equations in 3+1 dimensions without any symmetry ass
Externí odkaz:
http://arxiv.org/abs/2206.12318
Autor:
Touati, Arthur
We study the propagation of a compactly supported high-frequency wave through a semi-linear wave equation with a null structure. We prove that the self-interaction of the wave creates harmonics which remain close to the light-cone in the evolution. B
Externí odkaz:
http://arxiv.org/abs/2109.15204
Autor:
Touati, Arthur
In this article, we are interested in the Einstein vacuum equations on a Lorentzian manifold displaying $\mathbb{U}(1)$ symmetry. We identify some freely prescribable initial data, solve the constraint equations and prove the existence of a unique an
Externí odkaz:
http://arxiv.org/abs/2101.09093
Autor:
Touati, Arthur1 (AUTHOR) touati@ihes.fr
Publikováno v:
Communications in Mathematical Physics. Sep2023, Vol. 402 Issue 3, p3109-3200. 92p.
Autor:
Touati, Arthur1 (AUTHOR) touati@ihes.fr
Publikováno v:
Communications in Mathematical Physics. Aug2023, Vol. 401 Issue 3, p97-140. 44p.
Autor:
Touati, Arthur1 (AUTHOR) arthur.touati@polytechnique.edu
Publikováno v:
Asymptotic Analysis. 2023, Vol. 131 Issue 3/4, p541-582. 42p.