Zobrazeno 1 - 10
of 103
pro vyhledávání: '"Toru Ohira"'
Autor:
John G Milton, Toru Ohira, Juan Luis Cabrera, Ryan M Fraiser, Janelle B Gyorffy, Ferrin K Ruiz, Meredith A Strauss, Elizabeth C Balch, Pedro J Marin, Jeffrey L Alexander
Publikováno v:
PLoS ONE, Vol 4, Iss 10, p e7427 (2009)
Stick balancing at the fingertip is a powerful paradigm for the study of the control of human balance. Here we show that the mean stick balancing time is increased by about two-fold when a subject stands on a vibrating platform that produces vertical
Externí odkaz:
https://doaj.org/article/ba0acaaf99c447d3a83df1009c30af70
Autor:
Kenta Ohira, Toru Ohira
Publikováno v:
Journal of the Physical Society of Japan; 6/15/2023, Vol. 92 Issue 6, p1-7, 7p
Autor:
Kenta Ohira, Toru Ohira
Recently, we have studied a delay differential equation which has a coefficient that is a linear function of time. The equation has shown the oscillatory transient dynamics appear and disappear as the delay is increased between zero to asymptotically
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::9186a76266e4b57a3b9ddd2b1a727ae4
Autor:
John Milton, Toru Ohira
Publikováno v:
Mathematics as a Laboratory Tool ISBN: 9783030695781
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::5995f92d54eb5aed704c19f12127e495
https://doi.org/10.1007/978-3-030-69579-8_18
https://doi.org/10.1007/978-3-030-69579-8_18
Autor:
Toru Ohira, John Milton
Publikováno v:
Mathematics as a Laboratory Tool ISBN: 9783030695781
Mathematics as a Laboratory Tool ISBN: 9781461490951
Mathematics as a Laboratory Tool ISBN: 9781461490951
The study of fluctuations in dynamical systems had rather humble beginnings. With the advent of the light microscope in the late 1600s, many investigators noticed that small particles suspended in liquid were continually moving, even though no macros
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::6c15fd1849d601efa74178bd2ab76539
https://doi.org/10.1007/978-3-030-69579-8_15
https://doi.org/10.1007/978-3-030-69579-8_15
Autor:
John Milton, Toru Ohira
Publikováno v:
Mathematics as a Laboratory Tool ISBN: 9783030695781
Oscillations are characterized by their amplitudes and frequency content. As we saw in Section 8.3.3, determination of the power spectrum is a powerful technique to describe oscillations. In chronobiology, circadian rhythms are fit to a sinusoid with
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::5b0a8f8206fea9653402c38fc476cf4b
https://doi.org/10.1007/978-3-030-69579-8_12
https://doi.org/10.1007/978-3-030-69579-8_12
Autor:
John Milton, Toru Ohira
Publikováno v:
Mathematics as a Laboratory Tool ISBN: 9783030695781
Mathematics as a Laboratory Tool ISBN: 9781461490951
Mathematics as a Laboratory Tool ISBN: 9781461490951
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::c176ac0afbc49a4bd95344b127cf2823
https://doi.org/10.1007/978-3-030-69579-8_16
https://doi.org/10.1007/978-3-030-69579-8_16
Autor:
John Milton, Toru Ohira
Publikováno v:
Mathematics as a Laboratory Tool ISBN: 9783030695781
Mathematics as a Laboratory Tool ISBN: 9781461490951
Mathematics as a Laboratory Tool ISBN: 9781461490951
One of the most important regulatory mechanisms is feedback [18, 29]. Virtually every physiological variable has a feedback control loop associated with it. Indeed, some would even say that every such variable has multiple feedback loops [120, 202].
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::d1e48598b95b8091512ade960cef53a4
https://doi.org/10.1007/978-3-030-69579-8_9
https://doi.org/10.1007/978-3-030-69579-8_9
Autor:
Toru Ohira, John Milton
Publikováno v:
Mathematics as a Laboratory Tool ISBN: 9783030695781
Mathematics as a Laboratory Tool ISBN: 9781461490951
Mathematics as a Laboratory Tool ISBN: 9781461490951
There are several practical problems associated with the use of the Laplace transform to study input–output relationships in the laboratory. In particular, it is extremely difficult to obtain the Laplace integral transform for measured signals, and
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::347d86d1eee415960e8bb82f62b6f2a4
https://doi.org/10.1007/978-3-030-69579-8_8
https://doi.org/10.1007/978-3-030-69579-8_8
Autor:
John Milton, Toru Ohira
Publikováno v:
Mathematics as a Laboratory Tool ISBN: 9783030695781
Mathematics as a Laboratory Tool ISBN: 9781461490951
Mathematics as a Laboratory Tool ISBN: 9781461490951
The fixed point of a dynamical system describes a time-independent state. Depending on the nature of the interactions between a system and its surroundings, the fixed point can be either an equilibrium or a steady state. In the last chapter, we saw t
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::cff6ed710d01d7d42d8483a4b618232d
https://doi.org/10.1007/978-3-030-69579-8_5
https://doi.org/10.1007/978-3-030-69579-8_5