Zobrazeno 1 - 10
of 65
pro vyhledávání: '"Tornero, José M."'
In our previous work, we defined a quantum algorithmic technique known as the Generalised Phase Kick-Back, or $GPK$, and analysed its applications in generalising some classical quantum problems, such as the Deutsch-Jozsa problem or the Bernstein-Vaz
Externí odkaz:
http://arxiv.org/abs/2405.03850
Autor:
Ossorio-Castillo, J., Tornero, José M.
Publikováno v:
International Journal of Unconventional Computing 16 (2021) 327-341
Two quantum algorithms are presented, which tackle well--known problems in the context of numerical semigroups: the numerical semigroup membership problem (NSMP) and the Sylvester denumerant problem (SDP).
Externí odkaz:
http://arxiv.org/abs/2402.05524
Publikováno v:
Kyoto Journal of Mathematics 60 (2020) 269-289
We introduce a variation of the well-known Newton-Hironaka polytope for algebroid hypersurfaces. This combinatorial object is a perturbed version of the original one, parametrized by a real number. For well-chosen values of the parameter, the objects
Externí odkaz:
http://arxiv.org/abs/2402.05510
In this paper, we present a generalisation of the Phase Kick-Back technique, which is central to some of the classical algorithms in quantum computing, such as the Deutsch--Jozsa algorithm, Simon's algorithm or Grover's algorithm. We will begin by re
Externí odkaz:
http://arxiv.org/abs/2207.02580
The (Diophantine) Frobenius problem is a well-known NP-hard problem (also called the stamp problem or the chicken nugget problem) whose origins lie in the realm of combinatorial number theory. In this paper we present an adiabatic quantum algorithm w
Externí odkaz:
http://arxiv.org/abs/1907.01789
Publikováno v:
Contemporary Mathematics Volume 649, 2015
This article is partly a survey and partly a research paper. It tackles the use of Groebner bases for addressing problems of numerical semigroups, which is a topic that has been around for some years, but it does it in a systematic way which enables
Externí odkaz:
http://arxiv.org/abs/1907.01217
Publikováno v:
Semigroup Forum (2017) 94:123-138
In this paper we use an elementary approach by using numerical semigroups (specifically, those with two generators) to give a formula for the number of integral points inside a right-angled triangle with rational vertices. This is the basic case for
Externí odkaz:
http://arxiv.org/abs/1907.01226
Publikováno v:
Semigroup Forum (2015) 91:139-158
A simple way of computing the Ap\'ery set of a numerical semigroup (or monoid) with respect to a generator, using Groebner bases, is presented, together with a generalization for affine semigroups. This computation allows us to calculate the type set
Externí odkaz:
http://arxiv.org/abs/1907.01222
The seminal concept of characteristic polygon of an embedded algebroid surface, first developed by Hironaka, seems well suited for combinatorially (perhaps even effectively) tracking of a resolution process. However, the way this object evolves throu
Externí odkaz:
http://arxiv.org/abs/1905.12338
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.