Zobrazeno 1 - 10
of 403
pro vyhledávání: '"Torelli groups"'
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Randal-Williams, Oscar
We describe the ring structure of the rational cohomology of the Torelli groups of the manifolds $\#^g S^n \times S^n$ in a stable range, for $2n \geq 6$. Some of our results are also valid for $2n=2$, where they are closely related to unpublished re
Externí odkaz:
http://arxiv.org/abs/2301.01062
Autor:
Chen, Lei, Lanier, Justin
Johnson showed that the genus 1 bounding pair maps generate the Torelli group of a surface when its genus is at least 3. We show that this generalizes: apart from straightforward exceptions, the bounding pair maps of any fixed genus also generate the
Externí odkaz:
http://arxiv.org/abs/2302.11673
We call a symplectic rational surface $(X,\omega)$ \textit{positive} if $c_1(X)\cdot[\omega]>0$. The positivity condition of a rational surface is equivalent to the existence of a divisor $D\subset X$, such that $(X, D)$ is a log Calabi-Yau surface.
Externí odkaz:
http://arxiv.org/abs/2212.01873
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Putman introduced a notion of a partitioned surface which is a surface with boundary with decoration restricting how the surface can be embedded into larger surfaces, and defined the Torelli group of the partitioned surfaces. In this paper, we study
Externí odkaz:
http://arxiv.org/abs/2009.13122
Autor:
Krannich, Manuel, Kupers, Alexander
This note has two related but independent parts. Firstly, we prove a generalisation of a recent result of Gay on the smooth mapping class group of $S^4$. Secondly, we prove that the Dehn twist along the boundary sphere of a simply-connected closed sm
Externí odkaz:
http://arxiv.org/abs/2105.08904
Autor:
Eroğlu, Hatice Ünlü
The contraction of the image of the Johnson homomorphism is called the Chillingworth class. In this paper, we derive a combinatorial description of the Chillingworth class for Putman's subsurface Torelli groups. We also prove the naturality and uniqu
Externí odkaz:
http://arxiv.org/abs/1903.03799
Publikováno v:
Forum of Mathematics, Pi 8 (2020) e7
We completely describe the algebraic part of the rational cohomology of the Torelli groups of the manifolds $\#^g S^n \times S^n$ relative to a disc in a stable range, for $2n \geq 6$. Our calculation is also valid for $2n=2$ assuming that the ration
Externí odkaz:
http://arxiv.org/abs/1901.01862
Publikováno v:
Forum of Mathematics, Sigma 8 (2020) e64
The Torelli group of $W_g = \#^g S^n \times S^n$ is the subgroup of the diffeomorphisms of $W_g$ fixing a disc which act trivially on $H_n(W_g;Z)$. The rational cohomology groups of the Torelli group are representations of an arithmetic subgroup of $
Externí odkaz:
http://arxiv.org/abs/1908.04724