Zobrazeno 1 - 10
of 7 529
pro vyhledávání: '"Toral, P."'
Autor:
Luna, Alexandro
We consider a sequence of $C^2$ (or $C^3$) Anosov maps of the two-dimensional torus that satisfy a common cone condition, and show that if their $C^2$ (respectively, $C^3$) norms are uniformly bounded, then the non-stationary stable foliation must be
Externí odkaz:
http://arxiv.org/abs/2410.07406
We study regularity of a conjugacy between a hyperbolic or partially hyperbolic toral automorphism $L$ and a $C^\infty$ diffeomorphism $f$ of the torus. For a very weakly irreducible hyperbolic automorphism $L$ we show that any $C^1$ conjugacy is $C^
Externí odkaz:
http://arxiv.org/abs/2407.13877
In this paper, we prove the large deviation estimates and Anderson localization for CMV matrices on $\ell^2(\mathbb{Z}_+)$ with Verblunsky coefficients defined dynamically by the hyperbolic toral automorphism. Part of positivity results on the Lyapun
Externí odkaz:
http://arxiv.org/abs/2406.05449
Let $A$ be an invertible $d\times d$ matrix with integer elements. Then $A$ determines a self-map $T$ of the $d$-dimensional torus $\mathbb{T}^d=\mathbb{R}^d/\mathbb{Z}^d$. Given a real number $\tau>0$, and a sequence $\{z_n\}$ of points in $\mathbb{
Externí odkaz:
http://arxiv.org/abs/2405.02582
In this paper we study Lie 2-algebras over an algebraically closed field of characteristic two, which have a triangulable Cartan subalgebra, and derive some general properties of centerless ones. These properties allow us to do an analysis on simple
Externí odkaz:
http://arxiv.org/abs/2406.07554
Autor:
Nailwal, Rajkamal
Publikováno v:
New York Journal of Mathematics Volume 30 (2024), 1517-1533
In this paper, we present a complete solution to the Cauchy dual subnormality problem for torally expansive toral $3$-isometric weighted $2$-shifts. This solution is obtained by solving a couple of Hausdorff moment problems arising from $2$-variable
Externí odkaz:
http://arxiv.org/abs/2310.04785
Collapsed ancient solutions to the homogeneous Ricci flow on compact manifolds occur only on the total space of principal torus bundles. Under an algebraic assumption that guarantees flowing through diagonal metrics and a tameness assumption on the c
Externí odkaz:
http://arxiv.org/abs/2312.01469
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
We introduce and study Dirichlet-type spaces $\mathcal D(\mu_1, \mu_2)$ of the unit bidisc $\mathbb D^2,$ where $\mu_1, \mu_2$ are finite positive Borel measures on the unit circle. We show that the coordinate functions $z_1$ and $z_2$ are multiplier
Externí odkaz:
http://arxiv.org/abs/2306.07022
Autor:
Sandfeldt, Sven
In this paper we consider local centralizer classification and rigidity of some toral automorphisms. In low dimensions we classify up to finite index possible centralizers for volume preserving diffeomorphisms $f$ $C^{1}-$close to an ergodic irreduci
Externí odkaz:
http://arxiv.org/abs/2305.17494