Zobrazeno 1 - 10
of 1 169
pro vyhledávání: '"Toppan, A."'
Autor:
Toppan, Francesco
In this paper I present the state of the art concerning the theoretical detectability (and the open challenges for the experimental detectability) of a special class of paraparticles beyond bosons and fermions. The particles under considerations obey
Externí odkaz:
http://arxiv.org/abs/2411.18313
Autor:
Toppan, Francesco
Publikováno v:
Journal of Physics: Conf. Ser. 2912 (2024) 012011
I report the recent advances in applying (graded) Hopf algebras with braided tensor product in two scenarios: i) paraparticles beyond bosons and fermions living in any space dimensions and transforming under the permutation group; ii) physical models
Externí odkaz:
http://arxiv.org/abs/2411.14261
Publikováno v:
Journal of Physics: Conf. Ser. 2912 (2024) 012034
The first-order L\'evy-Leblond differential equations (LLEs) are the non-relativistic analogous of the Dirac equation: they are the "square roots" of the Schr\"odinger equation in ($1+d$) dimensions and admit spinor solutions. In this paper we show h
Externí odkaz:
http://arxiv.org/abs/2411.14139
In this paper we present a general framework to construct integrable $\mathbb{Z}_2^2$-graded extensions of classical, two-dimensional Toda and conformal affine Toda theories. The scheme is applied to define the extended Liouville and Sinh-Gordon mode
Externí odkaz:
http://arxiv.org/abs/2406.13503
Autor:
Toppan, Francesco
Publikováno v:
J. Phys. A: Math. Theor., Vol. 57, 435203 (2024)
This paper presents different mathematical structures connected with the parastatistics of braided Majorana qubits and clarifies their role; in particular, mixed-bracket Heisenberg-Lie algebras are introduced. These algebras belong to a more general
Externí odkaz:
http://arxiv.org/abs/2406.00876
Autor:
Toppan, Francesco
Publikováno v:
J. Phys.: Conf. Ser. 2667 (2023) 012014
In a recent paper (Balbino-de Freitas-Rana-FT, arXiv:2309.00965) we proved that the supercharges of the supersymmetric quantum mechanics can be statistically transmuted and accommodated into a $Z_2^n$-graded parastatistics. In this talk I derive the
Externí odkaz:
http://arxiv.org/abs/2312.13191
Autor:
Toppan, Francesco
Publikováno v:
SciPost Phys. Proc. 14, 046 (2023)
This paper presents the parastatistics of braided Majorana fermions obtained in the framework of a graded Hopf algebra endowed with a braided tensor product. The braiding property is encoded in a $t$-dependent $4\times 4$ braiding matrix $B_t$ relate
Externí odkaz:
http://arxiv.org/abs/2312.06693
Publikováno v:
Nucl. Phys. B 1009 (2024) 116729
Given an associative ring of $Z_2^n$-graded operators, the number of inequivalent brackets of Lie-type which are compatible with the grading and satisfy graded Jacobi identities is $b_n= n+\lfloor n/2\rfloor+1$. This follows from the Rittenberg-Wyler
Externí odkaz:
http://arxiv.org/abs/2309.00965
Autor:
Pasolini, Gianni1,2 (AUTHOR) gianni.pasolini@unibo.it, Toppan, Paolo3 (AUTHOR), Toppan, Andrea3 (AUTHOR), Bandiera, Rudy3 (AUTHOR), Mirabella, Mirko4 (AUTHOR) mirko.mirabella@unibo.it, Zabini, Flavio1,2 (AUTHOR), Bonata, Diego5 (AUTHOR), Andrisano, Oreste1,2 (AUTHOR)
Publikováno v:
Sensors (14248220). Sep2024, Vol. 24 Issue 18, p5942. 25p.
Publikováno v:
Nuclear Physics B, Vol 1009, Iss , Pp 116729- (2024)
Given an associative ring of Z2n-graded operators, the number of inequivalent brackets of Lie-type which are compatible with the grading and satisfy graded Jacobi identities is bn=n+⌊n/2⌋+1. This follows from the Rittenberg-Wyler and Scheunert an
Externí odkaz:
https://doaj.org/article/688519a86eb842c9afe3b20d16d1aa4e