Zobrazeno 1 - 10
of 22
pro vyhledávání: '"Toner, William"'
Autor:
Toner, William, Storkey, Amos
Training neural network classifiers on datasets contaminated with noisy labels significantly increases the risk of overfitting. Thus, effectively implementing Early Stopping in noisy label environments is crucial. Under ideal circumstances, Early Sto
Externí odkaz:
http://arxiv.org/abs/2409.06830
Autor:
Toner, William, Darlow, Luke
Despite their simplicity, linear models perform well at time series forecasting, even when pitted against deeper and more expensive models. A number of variations to the linear model have been proposed, often including some form of feature normalisat
Externí odkaz:
http://arxiv.org/abs/2403.14587
Autor:
Toner, William, Storkey, Amos
Training neural network classifiers on datasets with label noise poses a risk of overfitting them to the noisy labels. To address this issue, researchers have explored alternative loss functions that aim to be more robust. The `forward-correction' is
Externí odkaz:
http://arxiv.org/abs/2307.13100
Autor:
Toner, William Henry
Publikováno v:
Dissertations, Theses, and Masters Projects.
Autor:
Toner, William
Publikováno v:
Studies: An Irish Quarterly Review, 1997 Jul 01. 86(342), 180-183.
Externí odkaz:
https://www.jstor.org/stable/30091576
Publikováno v:
MRS Online Proceedings Library; 2014, Vol. 1666 Issue 1, p1-6, 6p
Autor:
Toner, William
Publikováno v:
Landscape Architecture, 1982 May 01. 72(3), 114-114.
Externí odkaz:
https://www.jstor.org/stable/26433013
Autor:
Kwok, Wai-Ming, George, Michael W., Grills, David C., Ma, Chensheng, Matousek, Pavel, Parker, Anthony W., Phillips, David, Toner, William T., Towrie, Michael
Publikováno v:
Angewandte Chemie. International Edition; April 25, 2003, Vol. 42 Issue: 16 p1826-1830, 5p