Zobrazeno 1 - 10
of 87
pro vyhledávání: '"Tomoi Koide"'
Autor:
Takeshi Kodama, Tomoi Koide
Publikováno v:
Physics, Vol 4, Iss 3, Pp 847-864 (2022)
In this short review, we focus on some of the subjects, related to J. Cleymans’ pioneering contribution of statistical approaches to the particle production process in heavy-ion collisions. We discuss these perspectives from the effects of stochast
Externí odkaz:
https://doaj.org/article/016857cfcdc14203a20d618e823ada3b
Autor:
Tomoi Koide, Takeshi Kodama
Publikováno v:
Physics. 4:847-864
In this short review, we focus on some of the subjects, related to J. Cleymans’ pioneering contribution of statistical approaches to the particle production process in heavy-ion collisions. We discuss these perspectives from the effects of stochast
In the stochastic formulation of viscous hydrodynamics, the velocity of a fluid element fluctuates satisfying a similar relation to the quantum-mechanical uncertainty relation. Using a non-relativistic toy model, we show that the presence of a veloci
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::4a142e75fb9b64e51c480773a9b9604c
http://arxiv.org/abs/2208.00452
http://arxiv.org/abs/2208.00452
Publikováno v:
Advances in Operator Theory. 7
Autor:
Tomoi Koide
The systematic expansion method of the solution of the Fokker-Planck equation is developed by generalizing the formulation proposed in [J. Phys. A50, 325001 (2017)]. Using this method, we obtain a new formula to calculate the mean work perturbatively
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::9387cf48e896120ec425f0b5a659bb72
Autor:
Tomoi Koide, Takeshi Kodama
Publikováno v:
Physics Letters A. 383:2713-2718
The interplay between quantum fluctuation and spacetime curvature is shown to induce an additional quantum-curvature (QC) term in the energy-momentum tensor of fluid using the generalized framework of the stochastic variational method (SVM). The QC t
Publikováno v:
Water
Volume 12
Issue 11
Water, Vol 12, Iss 3263, p 3263 (2020)
Volume 12
Issue 11
Water, Vol 12, Iss 3263, p 3263 (2020)
The uncertainty relations in hydrodynamics are numerically studied. We first give a review for the formulation of the generalized uncertainty relations in the stochastic variational method (SVM), following the paper by two of the present authors [Phy
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::8d20b6f5d969e6656f677d46de911770
http://arxiv.org/abs/2010.15226
http://arxiv.org/abs/2010.15226
Publikováno v:
Adv.Oper.Th.
Adv.Oper.Th., 2020, 5, pp.901-935. ⟨10.1007/s43036-020-00039-9⟩
Adv.Oper.Th., 2020, 5, pp.901-935. ⟨10.1007/s43036-020-00039-9⟩
Covariant affine integral quantization is studied and applied to the motion of a particle in a punctured plane R^2_\ast=R^2\{0}, for which the phase space is R^2_\ast=R^2\{0}X R^2. We examine the consequences of different quantizer operators built fr
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::df4af968b949612d7d1c27d2c410d84c
https://hal.science/hal-02423725
https://hal.science/hal-02423725
Autor:
Jean-Pierre Gazeau, Tomoi Koide
Publikováno v:
Annals Phys.
Annals Phys., 2020, 416, pp.168159. ⟨10.1016/j.aop.2020.168159⟩
Annals Phys., 2020, 416, pp.168159. ⟨10.1016/j.aop.2020.168159⟩
We revisit the problem of the uncertainty relation for angle by using quantum hydrodynamics formulated in the stochastic variational method (SVM), where we need not define the angle operator. We derive both the Kennard and Robertson-Schroedinger ineq
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::0c5506ec3022c4bd3db5a6d8eeb66faa
https://hal.archives-ouvertes.fr/hal-02409807
https://hal.archives-ouvertes.fr/hal-02409807
Publikováno v:
J.Phys.A
J.Phys.A, 2019, 52 (44), pp.445203. ⟨10.1088/1751-8121/ab4775⟩
J.Phys.A, 2019, 52 (44), pp.445203. ⟨10.1088/1751-8121/ab4775⟩
We implement the so-called Weyl-Heisenberg covariant integral quantization in the case of a classical system constrained by a bounded or semi-bounded geometry. The procedure, which is free of the ordering problem of operators, is illustrated with the
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::1d892578cde530c8ec056594c5a1223a
http://arxiv.org/abs/1902.07305
http://arxiv.org/abs/1902.07305