Zobrazeno 1 - 8
of 8
pro vyhledávání: '"Tomasz Ciaś"'
Autor:
Tomasz Ciaś, Krzysztof Piszczek
Publikováno v:
Mathematische Nachrichten. 294:486-517
We provide a study of Kothe sequence algebras. These are Frechet sequence algebras which can be viewed as abstract analogoues of algebras of smooth or holomorphic functions. Of particular treatment are the following properties: unitality, m‐convexi
Autor:
Tomasz Ciaś
Let $\mathscr{L}^*(s)$ be the maximal $\mathcal{O}^*$-algebra of unbounded operators on $\ell_2$ whose domain is the space $s$ of rapidly decreasing sequences. This is a noncommutative topological algebra with involution which can be identified, for
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::472216b4293ae577ad884525ac50843a
https://doi.org/10.1515/9783110602418
https://doi.org/10.1515/9783110602418
Autor:
Krzysztof Piszczek, Tomasz Ciaś
Publikováno v:
Banach J. Math. Anal. 11, no. 3 (2017), 615-635
We describe the multiplier algebra of the noncommutative Schwartz space. This multiplier algebra can be seen as the largest $^{*}$ -algebra of unbounded operators on a separable Hilbert space with the classical Schwartz space of rapidly decreasing fu
Autor:
Tomasz Ciaś
Publikováno v:
Bulletin of the London Mathematical Society. 49:102-116
The paper deal with the noncommutative Frechet ${}^*$-algebra $\mathcal{L}(s',s)$ of the so-called smooth operators, i.e. linear and continuous operators acting from the space $s'$ of slowly increasing sequences to the Frechet space $s$ of rapidly de
Autor:
Tomasz Ciaś
Publikováno v:
Studia Mathematica. 218:145-166
Let s be the space of rapidly decreasing sequences. We give the spectral representation of normal elements in the Fr\'echet algebra L(s',s) of the so-called smooth operators. We also characterize closed commutative *-subalgebras of L(s',s) and establ
Autor:
Tomasz Ciaś
We consider the Frechet $${}^*$$ -algebra $${\mathcal {L}}(s',s)\subseteq \mathcal L(\ell _2)$$ of the so-called smooth operators, i.e. continuous linear operators from the dual $$s'$$ of the space s of rapidly decreasing sequences to s. This algebra
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::72a8103713b4ef272b15fdf78e1763fd
http://arxiv.org/abs/1503.07095
http://arxiv.org/abs/1503.07095
Autor:
Tomasz Ciaś
Publikováno v:
Bull. Belg. Math. Soc. Simon Stevin 21, no. 1 (2014), 147-156
For $v\in\mathbb{R}^n$ let $K$ be a compact set in $\mathbb{R}^n$ containing a suitable smooth surface and such that the intersection $\{tv+x:t\in\mathbb{R}\}\cap K$ is a closed interval or a single point for all $x\in K$. We prove that every linear
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::18f94be20c95e1f35861e2f7f3519b8f