Zobrazeno 1 - 10
of 288
pro vyhledávání: '"Tomancak, Pavel"'
Autor:
Takáč, Tomáš, Kuběnová, Lenka, Šamajová, Olga, Dvořák, Petr, Řehák, Jan, Haberland, Jan, Bundschuh, Sebastian T., Pechan, Tibor, Tomančák, Pavel, Ovečka, Miroslav, Šamaj, Jozef
Publikováno v:
In Plant Physiology and Biochemistry November 2024 216
Automatic detection and segmentation of objects in 2D and 3D microscopy data is important for countless biomedical applications. In the natural image domain, spatial embedding-based instance segmentation methods are known to yield high-quality result
Externí odkaz:
http://arxiv.org/abs/2101.10033
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Image denoising is the first step in many biomedical image analysis pipelines and Deep Learning (DL) based methods are currently best performing. A new category of DL methods such as Noise2Void or Noise2Self can be used fully unsupervised, requiring
Externí odkaz:
http://arxiv.org/abs/1911.12291
Autor:
Prakash, Mangal, Buchholz, Tim-Oliver, Lalit, Manan, Tomancak, Pavel, Jug, Florian, Krull, Alexander
Deep learning (DL) has arguably emerged as the method of choice for the detection and segmentation of biological structures in microscopy images. However, DL typically needs copious amounts of annotated training data that is for biomedical projects t
Externí odkaz:
http://arxiv.org/abs/1911.12239
Autor:
Günther, Ulrik, Pietzsch, Tobias, Gupta, Aryaman, Harrington, Kyle I. S., Tomancak, Pavel, Gumhold, Stefan, Sbalzarini, Ivo F.
Publikováno v:
2019 IEEE Visualization Conference (VIS), Vancouver, BC, Canada, 2019, pp. 1-5
Life science today involves computational analysis of a large amount and variety of data, such as volumetric data acquired by state-of-the-art microscopes, or mesh data from analysis of such data or simulations. Visualization is often the first step
Externí odkaz:
http://arxiv.org/abs/1906.06726
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Schmied, Christopher, Steinbach, Peter, Pietzsch, Tobias, Preibisch, Stephan, Tomancak, Pavel
Multiview light sheet fluorescence microscopy (LSFM) allows to image developing organisms in 3D at unprecedented temporal resolution over long periods of time. The resulting massive amounts of raw image data requires extensive processing interactivel
Externí odkaz:
http://arxiv.org/abs/1507.08575
The increasingly popular light sheet microscopy techniques generate very large 3D time-lapse recordings of living biological specimen. The necessity to make large volumetric datasets available for interactive visualization and analysis has been widel
Externí odkaz:
http://arxiv.org/abs/1412.0488
Autor:
Preibisch, Stephan, Amat, Fernando, Stamataki, Evangelia, Sarov, Mihail, Singer, Robert H., Myers, Eugene, Tomancak, Pavel
Light sheet fluorescence microscopy is able to image large specimen with high resolution by imaging the sam- ples from multiple angles. Multi-view deconvolution can significantly improve the resolution and contrast of the images, but its application
Externí odkaz:
http://arxiv.org/abs/1308.0730