Zobrazeno 1 - 10
of 100
pro vyhledávání: '"Tom H Koornwinder"'
Autor:
Tom H Koornwinder
Publikováno v:
Indagationes Mathematicae. 34:317-337
Autor:
Tom H Koornwinder
Publikováno v:
Hypergeometry, Integrability and Lie Theory. :79-94
Following Verde-Star, Linear Algebra Appl. 627 (2021), we label families of orthogonal polynomials in the $q$-Askey scheme together with their $q$-hypergeometric representations by three sequences $x_k, h_k, g_k$ of Laurent polynomials in $q^k$, two
Publikováno v:
Transformation Groups, 26(4), 1261-1292. Birkhause Boston
Nonsymmetric interpolation Laurent polynomials in $n$ variables are introduced, with the interpolation points depending on $q$ and on a $n$-tuple of parameters $\tau=(\tau_1,\ldots,\tau_n)$. When $\tau_i=st^{n-i}$ Okounkov's $3$-parameter $BC_n$-type
Autor:
Enno Diekema, Tom H. Koornwinder
Publikováno v:
Kyushu Journal of Mathematics. 73:1-24
We derive some Euler type double integral representations for hypergeometric functions in two variables. In the first part of this paper we deal with Horn’s H2 function, in the second part with Olsson’s FP function. Our double integral representi
Autor:
Tom H. Koornwinder
Publikováno v:
International Journal of Mathematics and Mathematical Sciences, Vol 24, Iss 12, Pp 793-806 (2000)
This paper of tutorial nature gives some further details of proofs of some theorems related to the quantum dynamical Yang-Baxter equation. This mainly expands proofs given in Lectures on the dynamical Yang-Baxter equation by Etingof and Schiffmann, m
Externí odkaz:
https://doaj.org/article/ad0e9818b71248ff9a2c15887a35619c
Autor:
Howard S Cohl, Mourad E H Ismail, Hung-Hsi Wu, Paul M Terwilliger, George E Andrews, Krishnaswami Alladi, Bruce C. Berndt, Luc Vinet, Alexei Zhedanov, Dennis W Stanton, Tom H Koornwinder, Al Cuoco, Roger E Howe, Curtis D Roberts
Publikováno v:
Notices of the American Mathematical Society. 69:1
Autor:
Marta Mazzocco, Tom H. Koornwinder
Publikováno v:
Studies in Applied Mathematics. 141:424-473
The Askey–Wilson polynomials are a four-parameter family of orthogonal symmetric Laurent polynomials Rn[z] that are eigenfunctions of a second-order q-difference operator L, and of a second-order difference operator in the variable n with eigenvalu
Autor:
Tom H. Koornwinder
Publikováno v:
Symmetry, Integrability and Geometry: Methods and Applications, Vol 7, p 040 (2011)
A limit formula from q-Racah polynomials to big q-Jacobi polynomials is given which can be considered as a limit formula for orthogonal polynomials. This is extended to a multi-parameter limit with 3 parameters, also involving (q-)Hahn polynomials, l
Externí odkaz:
https://doaj.org/article/b5921300a6094ee7991c7ea70a926fc5
Autor:
Tom H. Koornwinder, Stefan A. Sauter
Publikováno v:
Mathematics of Computation, 84(294), 1795-1812. American Mathematical Society
In this paper, the intersection of bivariate orthogonal polynomials on triangle patches will be investigated. The result is interesting by its own but also has important applications in the theory of a posteriori error estimation for finite element d