Zobrazeno 1 - 10
of 139
pro vyhledávání: '"Tom Drummond"'
Publikováno v:
IEEE Access, Vol 11, Pp 50165-50179 (2023)
Content-based medical image retrieval is an important diagnostic tool that improves the explainability of computer-aided diagnosis systems and provides decision-making support to healthcare professionals. A common approach to content-based image retr
Externí odkaz:
https://doaj.org/article/f4e39545615445459d15d3927c0dbc78
Publikováno v:
Robotics, Vol 4, Iss 1, Pp 1-22 (2014)
We present a new vision based cooperative pose estimation scheme for systems of mobile robots equipped with RGB-D cameras. We first model a multi-robot system as an edge-weighted graph. Then, based on this model, and by using the real-time color and
Externí odkaz:
https://doaj.org/article/39130e3ecd5e41c3b16b94ffc02f7357
Autor:
Xiaoqin Wang, Y. Ahmet Şekercioğlu, Tom Drummond, Vincent Frémont, Enrico Natalizio, Isabelle Fantoni
Publikováno v:
Sensors, Vol 18, Iss 8, p 2430 (2018)
In this paper, the Relative Pose based Redundancy Removal (RPRR) scheme is presented, which has been designed for mobile RGB-D sensor networks operating under bandwidth-constrained operational scenarios. The scheme considers a multiview scenario in w
Externí odkaz:
https://doaj.org/article/13de45be47fc45bf95537d324aaefdfa
Publikováno v:
Proceedings of the AAAI Conference on Artificial Intelligence. 36:1926-1934
Learning and generalizing from limited examples, i.e., few-shot learning, is of core importance to many real-world vision applications. A principal way of achieving few-shot learning is to realize an embedding where samples from different classes are
Publikováno v:
Computer Vision – ACCV 2022 ISBN: 9783031263507
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::507fa6ead32f339fcd14a847ae6770c6
https://doi.org/10.1007/978-3-031-26351-4_14
https://doi.org/10.1007/978-3-031-26351-4_14
Autor:
Tianyu Zhu, Markus Hiller, Mahsa Ehsanpour, Rongkai Ma, Tom Drummond, Ian Reid, Hamid Rezatofighi
Publikováno v:
IEEE transactions on pattern analysis and machine intelligence.
Tracking a time-varying indefinite number of objects in a video sequence over time remains a challenge despite recent advances in the field. Most existing approaches are not able to properly handle multi-object tracking challenges such as occlusion,
Publikováno v:
Topics in Cognitive Science. 13:252-255
Events and event prediction are pivotal concepts across much of cognitive science, as demonstrated by the papers in this special issue. We first discuss how the study of events and the predictive processing framework may fruitfully inform each other.
Publikováno v:
IEEE Transactions on Pattern Analysis and Machine Intelligence. 42:15-26
In this paper, we introduce a novel methodology for characterizing the performance of deep learning networks (ResNets and DenseNet) with respect to training convergence and generalization as a function of mini-batch size and learning rate for image c
Publikováno v:
Lecture Notes in Computer Science ISBN: 9783031159336
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::5a849a04269d1db35c988ddc285b6872
https://doi.org/10.1007/978-3-031-15934-3_65
https://doi.org/10.1007/978-3-031-15934-3_65
Publikováno v:
Lecture Notes in Computer Science ISBN: 9783031164484
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::fde2e14cc1b9f45d370bda935d7211c4
https://doi.org/10.1007/978-3-031-16449-1_44
https://doi.org/10.1007/978-3-031-16449-1_44