Zobrazeno 1 - 8
of 8
pro vyhledávání: '"Tomáš Hejda"'
Autor:
Vítězslav Kala, Tomáš Hejda
Publikováno v:
Journal of Number Theory. 234:140-152
A positive quadratic form is $(k,\ell)$-universal if it represents all the numbers $kx+\ell$ where $x$ is a non-negative integer, and almost $(k,\ell)$-universal if it represents all but finitely many of them. We prove that for any $k,\ell$ such that
Autor:
Vítězslav Kala, Tomáš Hejda
Publikováno v:
manuscripta mathematica. 163:263-278
Let $K=\mathbb Q(\sqrt D)$ be a real quadratic field. We consider the additive semigroup $\mathcal O_K^+(+)$ of totally positive integers in $K$ and determine its generators (indecomposable integers) and relations; they can be nicely described in ter
Publikováno v:
Agricultural and Forest Meteorology. 271:54-63
Shrubs can be found far above or beyond cold tree limits. However, the mechanisms shrubs employ to thrive at sites not allowing the development of trees remain poorly understood. We hypothesize that shrubs are advantaged over trees thanks to: (i) the
Autor:
Tomáš Hejda
Publikováno v:
Monatshefte für Mathematik. 187:275-291
Let $$\beta \in (1,2)$$ be a Pisot unit and consider the symmetric $$\beta $$ -expansions. We give a necessary and sufficient condition for the associated Rauzy fractals to form a tiling of the contractive hyperplane. For $$\beta $$ a d-Bonacci numbe
Autor:
Tomáš Hejda, Edita Pelantová
Publikováno v:
Mathematics of Computation. 85:401-421
For a real number $\beta>1$, Erdős, Joo and Komornik study distances between consecutive points in the set $X^m(\beta)=\bigl\{\sum_{j=0}^n a_j \beta^j : n\in\mathbb N,\,a_j\in\{0,1,\dots,m\}\bigr\}$. Pisot numbers play a crucial role for the propert
Autor:
Wolfgang Steiner, Tomáš Hejda
Publikováno v:
Acta Arithmetica
Acta Arithmetica, Instytut Matematyczny PAN, 2018, 183 (1), pp.35-51. ⟨10.4064/aa8260-11-2017⟩
Acta Arithmetica, Instytut Matematyczny PAN, 2018, 183 (1), pp.35-51. ⟨10.4064/aa8260-11-2017⟩
We study rational numbers with purely periodic R\'enyi $\beta$-expansions. For bases $\beta$ satisfying $\beta^2=a\beta+b$ with $b$ dividing $a$, we give a necessary and sufficient condition for $\gamma(\beta)=1$, i.e., that all rational numbers $p/q
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::4e7d9cf23e81bec89101a6b24f0083bc
Publikováno v:
Combinatorics on Words
9th International Conference, WORDS 2013
9th International Conference, WORDS 2013, Sep 2013, Turku, Finland. pp.119-131, ⟨10.1007/978-3-642-40579-2_14⟩
Lecture Notes in Computer Science ISBN: 9783642405785
9th International Conference, WORDS 2013
9th International Conference, WORDS 2013, Sep 2013, Turku, Finland. pp.119-131, ⟨10.1007/978-3-642-40579-2_14⟩
Lecture Notes in Computer Science ISBN: 9783642405785
International audience; We study balancedness properties of words given by the Arnoux-Rauzy and Brun multi-dimensional continued fraction algorithms. We show that almost all Brun words on 3 letters and Arnoux-Rauzy words over arbitrary alphabets are
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::34e918e2c8cb657522499abfe742b737
http://arxiv.org/abs/1308.6694
http://arxiv.org/abs/1308.6694
Autor:
Tomáš Hejda
Any amicable pair \phi, \psi{} of Sturmian morphisms enables a construction of a ternary morphism \eta{} which preserves the set of infinite words coding 3-interval exchange. We determine the number of amicable pairs with the same incidence matrix in
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::8bb39a745736634e996bb2070c96f110