Zobrazeno 1 - 10
of 279
pro vyhledávání: '"Tom, Brian D."'
It is of scientific interest to identify essential biomarkers in biological processes underlying diseases to facilitate precision medicine. Factor analysis (FA) has long been used to address this goal: by assuming latent biological pathways drive the
Externí odkaz:
http://arxiv.org/abs/2408.08771
The increasing availability of high-dimensional, longitudinal measures of gene expression can facilitate understanding of biological mechanisms, as required for precision medicine. Biological knowledge suggests that it may be best to describe complex
Externí odkaz:
http://arxiv.org/abs/2307.02781
Precision medicine is an emerging field that takes into account individual heterogeneity to inform better clinical practice. In clinical trials, the evaluation of treatment effect heterogeneity is an important component, and recently, many statistica
Externí odkaz:
http://arxiv.org/abs/2302.11647
Personalized medicine has gained much popularity recently as a way of providing better healthcare by tailoring treatments to suit individuals. Our research, motivated by the UK INTERVAL blood donation trial, focuses on estimating the optimal individu
Externí odkaz:
http://arxiv.org/abs/2302.11638
Autor:
Rouanet, Anaïs, Johnson, Rob, Strauss, Magdalena E, Richardson, Sylvia, Tom, Brian D, White, Simon R, Kirk, Paul D W
The identification of sets of co-regulated genes that share a common function is a key question of modern genomics. Bayesian profile regression is a semi-supervised mixture modelling approach that makes use of a response to guide inference toward rel
Externí odkaz:
http://arxiv.org/abs/2111.04518
Autor:
Kirwan, Peter D., Elgohari, Suzanne, Jackson, Christopher H., Tom, Brian D. M., Mandal, Sema, De Angelis, Daniela, Presanis, Anne M.
Background: Trends in hospitalised case-fatality risk (HFR), risk of intensive care unit (ICU) admission and lengths of stay for patients hospitalised for COVID-19 in England over the pre-vaccination era are unknown. Methods: Data on hospital and ICU
Externí odkaz:
http://arxiv.org/abs/2103.04867
The case-cohort study design bypasses resource constraints by collecting certain expensive covariates for only a small subset of the full cohort. Weighted Cox regression is the most widely used approach for analysing case-cohort data within the Cox m
Externí odkaz:
http://arxiv.org/abs/2007.12974
Autor:
Marinescu, Razvan V., Oxtoby, Neil P., Young, Alexandra L., Bron, Esther E., Toga, Arthur W., Weiner, Michael W., Barkhof, Frederik, Fox, Nick C., Eshaghi, Arman, Toni, Tina, Salaterski, Marcin, Lunina, Veronika, Ansart, Manon, Durrleman, Stanley, Lu, Pascal, Iddi, Samuel, Li, Dan, Thompson, Wesley K., Donohue, Michael C., Nahon, Aviv, Levy, Yarden, Halbersberg, Dan, Cohen, Mariya, Liao, Huiling, Li, Tengfei, Yu, Kaixian, Zhu, Hongtu, Tamez-Pena, Jose G., Ismail, Aya, Wood, Timothy, Bravo, Hector Corrada, Nguyen, Minh, Sun, Nanbo, Feng, Jiashi, Yeo, B. T. Thomas, Chen, Gang, Qi, Ke, Chen, Shiyang, Qiu, Deqiang, Buciuman, Ionut, Kelner, Alex, Pop, Raluca, Rimocea, Denisa, Ghazi, Mostafa M., Nielsen, Mads, Ourselin, Sebastien, Sorensen, Lauge, Venkatraghavan, Vikram, Liu, Keli, Rabe, Christina, Manser, Paul, Hill, Steven M., Howlett, James, Huang, Zhiyue, Kiddle, Steven, Mukherjee, Sach, Rouanet, Anais, Taschler, Bernd, Tom, Brian D. M., White, Simon R., Faux, Noel, Sedai, Suman, Oriol, Javier de Velasco, Clemente, Edgar E. V., Estrada, Karol, Aksman, Leon, Altmann, Andre, Stonnington, Cynthia M., Wang, Yalin, Wu, Jianfeng, Devadas, Vivek, Fourrier, Clementine, Raket, Lars Lau, Sotiras, Aristeidis, Erus, Guray, Doshi, Jimit, Davatzikos, Christos, Vogel, Jacob, Doyle, Andrew, Tam, Angela, Diaz-Papkovich, Alex, Jammeh, Emmanuel, Koval, Igor, Moore, Paul, Lyons, Terry J., Gallacher, John, Tohka, Jussi, Ciszek, Robert, Jedynak, Bruno, Pandya, Kruti, Bilgel, Murat, Engels, William, Cole, Joseph, Golland, Polina, Klein, Stefan, Alexander, Daniel C.
Publikováno v:
Machine Learning for Biomedical Imaging (MELBA), Dec 2021
We present the findings of "The Alzheimer's Disease Prediction Of Longitudinal Evolution" (TADPOLE) Challenge, which compared the performance of 92 algorithms from 33 international teams at predicting the future trajectory of 219 individuals at risk
Externí odkaz:
http://arxiv.org/abs/2002.03419
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.