Zobrazeno 1 - 10
of 116
pro vyhledávání: '"Tolstoy, V. N."'
Autor:
Tolstoy, V. N.
By the supersymmetrization of a simple algebraic technique proposed in \cite{LuTo2017} we obtain the complete classification of all basic (nonisomorphic) quantum deformations for the orthosymplectic Lie superalgebra $\mathfrak{osp}(1|2;\mathbb{C})$ a
Externí odkaz:
http://arxiv.org/abs/2112.13631
Publikováno v:
JHEP 1711 (2017) 187
We construct firstly the complete list of five quantum deformations of $D=4$ complex homogeneous orthogonal Lie algebra $\mathfrak{o}(4;\mathbb{C})\cong \mathfrak{o}(3;\mathbb{C})\oplus \mathfrak{o}(3;\mathbb{C})$, describing quantum rotational symme
Externí odkaz:
http://arxiv.org/abs/1708.09848
In our previous paper we obtained a full classification of nonequivalent quasitriangular quantum deformations for the complex $D=4$ Euclidean Lie symmetry $\mathfrak{o}(4;\mathbb{C})$. The result was presented in the form of a list consisting of thre
Externí odkaz:
http://arxiv.org/abs/1704.06852
Autor:
Lukierski, J., Tolstoy, V. N.
Using the isomorphism $\mathfrak{o}(3;\mathbb{C})\simeq\mathfrak{sl}(2;\mathbb{C})$ we develop a new simple algebraic technique for complete classification of quantum deformations (the classical $r$-matrices) for real forms $\mathfrak{o}(3)$ and $\ma
Externí odkaz:
http://arxiv.org/abs/1612.03866
Autor:
Tolstoy, V. N.
Publikováno v:
Physics of Particles and Nuclei Letters, December 2014, Volume 11, Issue 7, 933--937
Equivalence between algebraic structures generated by parastatisticstriple relations of Green (1953) and Greenberg -- Messiah (1965), and certain orthosymplectic $\mathbb{Z}_2\times \mathbb{Z}_2$-graded Lie superalgebras is found explicitly. Moreover
Externí odkaz:
http://arxiv.org/abs/1610.01628
Autor:
Tolstoy, V. N.
Publikováno v:
Lie Theory and Its Application in Physics (Ed. V. Dobrev), Springer Proceedings in Mathematics, v. 111, (2014), 357--367
It is well-known that de Sitter Lie algebra $\mathfrak{o}(1,4)$ contrary to anti-de Sitter one $\mathfrak{o}(2,3)$ does not have a standard $\mathbb{Z}_2$-graded superextension. We show here that the Lie algebra $\mathfrak{o}(1,4)$ has a superextensi
Externí odkaz:
http://arxiv.org/abs/1610.01566
Publikováno v:
Phys.Lett. B754 (2016) 176-181
We employ new calculational technique and present complete list of classical $r$-matrices for $D=4$ complex homogeneous orthogonal Lie algebra $\mathfrak{o}(4;\mathbb{C})$, the rotational symmetry of four-dimensional complex space-time. Further apply
Externí odkaz:
http://arxiv.org/abs/1511.03653
Autor:
Tolstoy, V. N.1 (AUTHOR) tolstoy@nucl-th.sinp.msu.ru
Publikováno v:
European Physical Journal C -- Particles & Fields. Mar2023, Vol. 83 Issue 3, p1-17. 17p.
Publikováno v:
Chengming Bai, Jean-Pierre Gazeau and Mo-Lin Ge (eds.), World Scientific: Singapore, pp. 443-454 (2013)
We present the class of deformations of simple Euclidean superalgebra, which describe the supersymmetrization of some Lie algebraic noncommutativity of D=4 Euclidean space-time. The presented deformations are generated by the supertwists. We provide
Externí odkaz:
http://arxiv.org/abs/1211.4546
Publikováno v:
JHEP 1206 (2012) 154
We present a large class of supersymmetric classical r-matrices, describing the supertwist deformations of Poincare and Euclidean superalgebras. We consider in detail new family of four supertwists of N=1 Poincare superalgebra and provide as well the
Externí odkaz:
http://arxiv.org/abs/1112.1936