Zobrazeno 1 - 10
of 30
pro vyhledávání: '"Tolev, D. I."'
Autor:
Tolev, D. I.
We consider the Diophantine inequality \[ \left| p_1^{c} + p_2^{c} + p_3^c- N \right| < (\log N)^{-E} , \] where $1 < c < \frac{15}{14}$, $N$ is a sufficiently large real number and $E>0$ is an arbitrarily large constant. We prove that the above ineq
Externí odkaz:
http://arxiv.org/abs/1701.07652
Autor:
Todorova, T. L., Tolev, D. I.
We consider Lagrange's equation $x_1^2 + x_2^2 + x_3^2 + x_4^2 = N$, where $N$ is a sufficiently large and odd integer, and prove that it has a solution in natural numbers $x_1, \dots, x_4 $ such that $x_1 x_2 x_3 x_4 + 1$ has no more than 48 prime f
Externí odkaz:
http://arxiv.org/abs/1306.2748
Autor:
Tolev, D. I.
In this paper we improve the estimate for the remainder term in the asymptotic formula concerning the circle problem in an arithmetic progression.
Externí odkaz:
http://arxiv.org/abs/1106.3474
Autor:
Tolev, D. I.
We establish a simple identity and using it we find a new proof of a result of Kloosterman.
Externí odkaz:
http://arxiv.org/abs/1007.2054
Autor:
Todorova, T. L., Tolev, D. I.
A classical problem in analytic number theory is to study the distribution of $\alpha p$ modulo 1, where $\alpha$ is irrational and $p$ runs over the set of primes. We consider the subsequence generated by the primes $p$ such that $p+2$ is an almost-
Externí odkaz:
http://arxiv.org/abs/0711.0171
Autor:
Kumchev, A. V., Tolev, D. I.
Publikováno v:
Serdica Math. J. 31 (2005), 1-74
The main purpose of this survey is to introduce an inexperienced reader to additive prime number theory and some related branches of analytic number theory. We state the main problems in the field, sketch their history and the basic machinery used to
Externí odkaz:
http://arxiv.org/abs/math/0412220
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Todorova, T. L., Tolev, D. I.
A classical problem in analytic number theory is to study the distribution of $��p$ modulo 1, where $��$ is irrational and $p$ runs over the set of primes. We consider the subsequence generated by the primes $p$ such that $p+2$ is an almost-p
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::8047a7cd4d2b21fc5b3bb72a38dd4c58
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.