Zobrazeno 1 - 10
of 931
pro vyhledávání: '"Tolar J"'
Publikace je základní vysokoškolskou učebnicí poskytující ucelený pohled na klasickou teoretickou fyziku. Čtenáři nabízí pohled na přírodní zákonitosti klasické fyziky, ve kterých je zdůrazněna jejich elegance projevující se v
Autor:
Tolar, J.
Publikováno v:
J. Phys.: Conf. Series 1071 (2018) 012022 (11 pages)
The term Clifford group was introduced in 1998 by D. Gottesmann in his investigation of quantum error-correcting codes. The simplest Clifford group in multiqubit quantum computation is generated by a restricted set of unitary Clifford gates - the Had
Externí odkaz:
http://arxiv.org/abs/1810.10259
Autor:
Kirchner, V.A. *, Tak, E., Kim, K., LeCluyse, E.L., Niedernhofer, L.J., Soldatow, V., Lee, J., Kim, J., Tolar, J., Song, G.W., Pruett, T.L.
Publikováno v:
In Tissue and Cell February 2020 62
Autor:
Tolar, J.
Publikováno v:
Journal of Physics: Conference Series 538 (2014) 012020 (12 pp)
Quantum mechanics in Hilbert spaces of finite dimension $N$ is reviewed from the number theoretic point of view. For composite numbers $N$ possible quantum kinematics are classified on the basis of Mackey's Imprimitivity Theorem for finite Abelian gr
Externí odkaz:
http://arxiv.org/abs/1411.6390
Autor:
Korbelar, M., Tolar, J.
Publikováno v:
J. Phys. A: Math. Theor. 45 (2012) 285305 (18pp)
A composite quantum system comprising a finite number k of subsystems which are described with position and momentum variables in Z_{n_{i}}, i=1,...,k, is considered. Its Hilbert space is given by a k-fold tensor product of Hilbert spaces of dimensio
Externí odkaz:
http://arxiv.org/abs/1210.6167
Autor:
Korbelar, M., Tolar, J.
Publikováno v:
Journal of Physics: Conference Series 343 (2012) 012122
Symmetries of finite Heisenberg groups represent an important tool for the study of deeper structure of finite-dimensional quantum mechanics. This short contribution presents extension of previous investigations to composite quantum systems comprised
Externí odkaz:
http://arxiv.org/abs/1201.3903
Publikováno v:
J. Phys. A: Math. Theor. 45 (2012) 244027
We present a possible construction of coherent states on the unit circle as configuration space. Our approach is based on Borel quantizations on S^1 including the Aharonov-Bohm type quantum description. The coherent states are constructed by Perelomo
Externí odkaz:
http://arxiv.org/abs/1201.3895
We present a possible construction of coherent states on the unit circle as configuration space. In our approach the phase space is the product Z x S^1. Because of the duality of canonical coordinates and momenta, i.e. the angular variable and the in
Externí odkaz:
http://arxiv.org/abs/1101.4171
Autor:
Korbelar, M., Tolar, J.
Publikováno v:
J. Phys. A: Math. Theor. 43 (2010) 375302 (15pp)
Symmetries of the finite Heisenberg group represent an important tool for the study of deeper structure of finite-dimensional quantum mechanics. As is well known, these symmetries are properly expressed in terms of certain normalizer. This paper exte
Externí odkaz:
http://arxiv.org/abs/1006.0328
Autor:
Tolar, J, Chadzitaskos, G
Publikováno v:
J. Phys. A: Math. Theor. 42 (2009) 245306 (11 pp)
Our previous work on quantum mechanics in Hilbert spaces of finite dimensions N is applied to elucidate the deep meaning of Feynman's path integral pointed out by G. Svetlichny. He speculated that the secret of the Feynman path integral may lie in th
Externí odkaz:
http://arxiv.org/abs/0904.0886