Zobrazeno 1 - 10
of 18
pro vyhledávání: '"Tokushige, Yuki"'
Autor:
Tokushige, Yuki
In this short note, we will give a new combinatorial proof of Ginibre's inequality for XY models. Our proof is based on multigraph representations introduced by van Engelenburg-Lis (2023) and a new combinatorial bijection.
Comment: 7 pages, 1 fi
Comment: 7 pages, 1 fi
Externí odkaz:
http://arxiv.org/abs/2406.08944
Autor:
Berger, Noam, Tokushige, Yuki
We study limit laws for simple random walks on supercritical long-range percolation clusters on the integer lattice. For the long range percolation model, the probability that two vertices are connected behaves asymptotically as a negative power of d
Externí odkaz:
http://arxiv.org/abs/2403.18532
Autor:
Tokushige, Yuki
0048
甲第21542号
理博第4449号
新制||理||1639(附属図書館)
学位規則第4条第1項該当
Doctor of Science
Kyoto University
DGAM
甲第21542号
理博第4449号
新制||理||1639(附属図書館)
学位規則第4条第1項該当
Doctor of Science
Kyoto University
DGAM
Externí odkaz:
http://hdl.handle.net/2433/242580
Autor:
Bowditch, Adam, Tokushige, Yuki
We prove that the speed of a biased random walk on a supercritical Galton-Watson tree conditioned to survive is analytic within the ballistic regime. This extends the previous work arXiv:1906.07913 in which it was shown that the speed is differentiab
Externí odkaz:
http://arxiv.org/abs/2006.03433
Autor:
Bowditch, Adam, Tokushige, Yuki
We prove that the speed of a $\lambda$-biased random walk on a supercritical Galton-Watson tree is differentiable for $\lambda$ such that the walk is ballistic and obeys a central limit theorem, and give an expression of the derivative using a certai
Externí odkaz:
http://arxiv.org/abs/1906.07913
Autor:
Mathieu, Pierre, Tokushige, Yuki
We show the existence of a trace process at infinity for random walks on hyperbolic groups of conformal dimension < 2 and relate it to the existence of a reflecting random walk. To do so, we employ the theory of Dirichlet forms which connects the the
Externí odkaz:
http://arxiv.org/abs/1812.01816
Autor:
Tokushige, Yuki
We prove that the speed of $\lambda$-biased random walks on a supercritical Galton-Watson tree without leaves is differentiable when $\lambda\in(0,1)$, and give an expression of the derivative using a certain 2-dimensional Gaussian random variable. T
Externí odkaz:
http://arxiv.org/abs/1811.04849
Autor:
Tokushige, Yuki
Kigami showed that a transient random walk on a deterministic infinite tree $T$ induces its trace process on the Martin boundary of $T$. In this paper, we will deal with trace processes on Martin boundaries of random trees instead of deterministic on
Externí odkaz:
http://arxiv.org/abs/1708.08075
Autor:
Tokushige, Yuki
Publikováno v:
In Stochastic Processes and their Applications February 2020 130(2):584-604
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.