Zobrazeno 1 - 6
of 6
pro vyhledávání: '"Todorova, T. L."'
Autor:
Todorova, T. L.
A classical problem in analytic number theory is to study the distribution of fractional part $\alpha p^k+\beta,\,k\ge 1$ modulo 1, where $\alpha$ is irrational and $p$ runs over the set of primes. For $k=2$ we consider the subsequence generated by t
Externí odkaz:
http://arxiv.org/abs/2404.01045
Autor:
Todorova, T. L., Tolev, D. I.
We consider Lagrange's equation $x_1^2 + x_2^2 + x_3^2 + x_4^2 = N$, where $N$ is a sufficiently large and odd integer, and prove that it has a solution in natural numbers $x_1, \dots, x_4 $ such that $x_1 x_2 x_3 x_4 + 1$ has no more than 48 prime f
Externí odkaz:
http://arxiv.org/abs/1306.2748
Autor:
Todorova, T. L., Tolev, D. I.
A classical problem in analytic number theory is to study the distribution of $\alpha p$ modulo 1, where $\alpha$ is irrational and $p$ runs over the set of primes. We consider the subsequence generated by the primes $p$ such that $p+2$ is an almost-
Externí odkaz:
http://arxiv.org/abs/0711.0171
Autor:
Todorova, T. L., Tolev, D. I.
A classical problem in analytic number theory is to study the distribution of $��p$ modulo 1, where $��$ is irrational and $p$ runs over the set of primes. We consider the subsequence generated by the primes $p$ such that $p+2$ is an almost-p
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::8047a7cd4d2b21fc5b3bb72a38dd4c58
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Todorova, T. L., Tolev, D. I.
Publikováno v:
Tatra Mountains Mathematical Publications; June 2014, Vol. 59 Issue: 1 p1-26, 26p