Zobrazeno 1 - 6
of 6
pro vyhledávání: '"Tobias Marxen"'
Autor:
Tobias Marxen, Boris Vertman
In this paper we construct a Ricci DeTurck flow on any incomplete Riemannian manifold with bounded curvature. The central property of the flow is that it stays uniformly equivalent to the initial incomplete Riemannian metric, and in that sense preser
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::57075ecddb45ae6f4edfd7c04f560fd6
Autor:
Tobias Marxen
Publikováno v:
The Journal of Geometric Analysis. 30:4036-4070
We consider Ricci flow starting from warped product manifolds \(\left( {\mathbb {R}}\times N, k_0 + g_0^2 g_N\right) \), whose typical fibre \((N,g_N)\) is closed and Ricci flat. Here \(k_0\) is a Riemannian metric on \({\mathbb {R}}\) and \(g_0: {\m
Autor:
Tobias Marxen
Publikováno v:
The Journal of Geometric Analysis. 28:3424-3457
We consider the Ricci flow on noncompact $$n+1$$ -dimensional manifolds M with symmetries, corresponding to warped product manifolds $$\mathbb {R}\times T^n$$ with flat fibres. We show longtime existence and that the Ricci flow solution is of type II
Autor:
Oliver C. Schnürer, Oliver Lindblad Petersen, Tobias Marxen, Klaus Kröncke, Felix Lubbe, Wolfgang Meiser, Áron Szabó, Boris Vertman, Wolfgang Maurer
Publikováno v:
Kröncke, K, Lindblad Petersen, O, Lubbe, F, Marxen, T, Maurer, W, Meiser, W, Schnürer, O C, Szabó, Á & Vertman, B 2021, ' Mean Curvature Flow in Asymptotically Flat Product Spacetimes ', Journal of Geometric Analysis, vol. 31, no. 6, pp. 5451-5479 . https://doi.org/10.1007/s12220-020-00486-z
We consider the long-time behaviour of the mean curvature flow of spacelike hypersurfaces in the Lorentzian product manifold $M\times\mathbb{R}$, where $M$ is asymptotically flat. If the initial hypersurface $F_0\subset M\times\mathbb{R}$ is uniforml
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::66ceae3d500ee3de4477ed4f0911a1ef
http://arxiv.org/abs/1903.03502
http://arxiv.org/abs/1903.03502
Autor:
Felix Schulze, Brian H. Smith, Amos Koeller, Nihar Jangle, Abderrahim Azouani, Mariel Sáez, Sandra Ritthaler, Oliver C. Schnürer, Juliette Hell, Tobias Marxen, Marc Georgi
Publikováno v:
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY
Artículos CONICYT
CONICYT Chile
instacron:CONICYT
Artículos CONICYT
CONICYT Chile
instacron:CONICYT
We consider convex symmetric lens-shaped networks in R 2 \mathbb {R}^2 that evolve under the curve shortening flow. We show that the enclosed convex domain shrinks to a point in finite time. Furthermore, after appropriate rescaling the evolving netwo
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::83d6cad613085cee81aa79e05537464e
Autor:
Oliver C. Schnürer, Abderrahim Azouani, Marc Georgi, Juliette Hell, Nihar Jangle, Amos Koeller, Tobias Marxen, Sandra Ritthaler, Mariel Sáez, Felix Schulze, Brian Smith
Publikováno v:
Transactions of the American Mathematical Society; Nov2010, Vol. 363 Issue 5, p2265-2294, 30p