Zobrazeno 1 - 5
of 5
pro vyhledávání: '"Tobias Harz"'
Publikováno v:
Математический сборник. 212:126-156
Предыдущие результаты авторов о существовании глобальных определяющих функций распространены на ряд новых постановок. В частности, ус
Publikováno v:
The Journal of Geometric Analysis. 30:2293-2325
We continue the study of the core $${\mathfrak {c}}(\Omega )$$ of a complex manifold $$\Omega $$ which was initiated in Harz et al. (Math Z, doi:10.1007/s00209-016-1792-9, 2016). The main focus lies on the investigation of pseudoconcavity and Liouvil
Publikováno v:
Mathematische Zeitschrift. 286:987-1002
We show that every strictly pseudoconvex domain $$\Omega $$ with smooth boundary in a complex manifold $${\mathcal {M}}$$ admits a global defining function, i.e., a smooth plurisubharmonic function $$\varphi :U \rightarrow {\mathbb {R}}$$ defined on
A sufficient condition for the infinite dimensionality of the Bergman space of a pseudoconvex domain is given. This condition holds on any pseudoconvex domain that has at least one smooth boundary point of finite type in the sense of D'Angelo.
C
C
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::38179d024bb28a83dd951623ce9540d4
For each $n\geq2$ we construct an unbounded closed pseudoconcave complete pluripolar set $\mathcal E$ in $\mathbb C^n$ which contains no analytic variety of positive dimension (we call it a \textit{Wermer type set}). We also construct an unbounded st
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::737c93ba7666f19cf7dbca1ee43dae1a