Zobrazeno 1 - 10
of 30
pro vyhledávání: '"Tobias Dyckerhoff"'
Publikováno v:
Forum of Mathematics, Sigma, Vol 11 (2023)
Constructible sheaves of abelian groups on a stratified space can be equivalently described in terms of representations of the exit-path category. In this work, we provide a similar presentation of the abelian category of perverse sheaves on a strati
Externí odkaz:
https://doaj.org/article/1759d0843f564faaa922b0707316e669
Publikováno v:
Forum of Mathematics, Sigma, Vol 9 (2021)
We show that the perfect derived categories of Iyama’s d-dimensional Auslander algebras of type ${\mathbb {A}}$ are equivalent to the partially wrapped Fukaya categories of the d-fold symmetric product of the $2$-dimensional unit disk with finitely
Externí odkaz:
https://doaj.org/article/cda16b657f3647a0ae84361b0a6ad23c
Autor:
Tobias Dyckerhoff, Michael K. Brown
Publikováno v:
Homology, Homotopy and Applications. 22:1-29
We study the topological K-theory spectrum of the dg singularity category associated to a weighted projective complete intersection. We calculate the topological K-theory of the dg singularity category of a weighted projective hypersurface in terms o
Autor:
Tobias Dyckerhoff, Christopher Brav
Publikováno v:
Selecta Mathematica. 27
We show that a Calabi–Yau structure of dimension d on a smooth dg category $${C}$$ C induces a symplectic form of degree $$2-d$$ 2 - d on ‘the moduli space of objects’ $${{\mathcal {M}}}_{{C}}$$ M C . We show moreover that a relative Calabi–Y
Autor:
Tobias Dyckerhoff
Publikováno v:
Compositio Mathematica. 153:1673-1705
We provide an explicit formula for localizing$\mathbb{A}^{1}$-homotopy invariants of topological Fukaya categories of marked surfaces. Following a proposal of Kontsevich, this differential$\mathbb{Z}$-graded category is defined as global sections of
We show that the perfect derived categories of Iyama's $d$-dimensional Auslander algebras of type $\mathbb{A}$ are equivalent to the partially wrapped Fukaya categories of the $d$-fold symmetric product of the $2$-dimensional unit disk with finitely
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::3f6fb6beed0fc586c34fec5e4cc5aada
http://arxiv.org/abs/1911.11719
http://arxiv.org/abs/1911.11719
Publikováno v:
Algebr. Geom. Topol. 20, no. 6 (2020), 3147-3182
In this work, we introduce a 2-categorical variant of Lurie's relative nerve functor. We prove that it defines a right Quillen equivalence which, upon passage to $\infty$-categorical localizations, corresponds to Lurie's scaled unstraightening equiva
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::84c51d32d932a889135da39d444af4e9
http://arxiv.org/abs/1910.06223
http://arxiv.org/abs/1910.06223
Inspired by work of Ladkani, we explain how to construct generalisations of the classical reflection functors of Bern\v{s}te\u{\i}n, Gel'fand and Ponomarev by means of the Grothendieck construction.
Comment: 8 pages; v2: minor edits
Comment: 8 pages; v2: minor edits
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::722c70feb3d38dbf0aa34a28e16aa1c1
http://arxiv.org/abs/1901.06993
http://arxiv.org/abs/1901.06993
Autor:
Tobias Dyckerhoff, Mikhail Kapranov
Publikováno v:
Higher Segal Spaces ISBN: 9783030271220
The main result of this chapter is Theorem 6.3.2 which expresses the 2-Segal condition for a simplicial object X in terms of 1-Segal conditions for simplicial analogs of the path space of X, as defined by Illusie.
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::08a7471b506a89ec7eb16e10135af4ee
https://doi.org/10.1007/978-3-030-27124-4_6
https://doi.org/10.1007/978-3-030-27124-4_6
Autor:
Tobias Dyckerhoff, Mikhail Kapranov
Publikováno v:
Higher Segal Spaces ISBN: 9783030271220
Informally, a higher category consists of (0) a collection of objects, (1) for objects x, y a collection of 1-morphisms between x and y, (2) for objects x, y and 1-morphisms f, g between x and y a collection of 2-morphisms between f and g, (n) for ev
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::5f5c8876fafad1d660f5b05f8697d445
https://doi.org/10.1007/978-3-030-27124-4_2
https://doi.org/10.1007/978-3-030-27124-4_2