Zobrazeno 1 - 10
of 310
pro vyhledávání: '"Tjärnberg A"'
Autor:
Andreas Tjärnberg, Maggie Beheler-Amass, Christopher A. Jackson, Lionel A. Christiaen, David Gresham, Richard Bonneau
Publikováno v:
Genome Biology, Vol 25, Iss 1, Pp 1-28 (2024)
Abstract Background Modeling of gene regulatory networks (GRNs) is limited due to a lack of direct measurements of genome-wide transcription factor activity (TFA) making it difficult to separate covariance and regulatory interactions. Inference of re
Externí odkaz:
https://doaj.org/article/2d0a305582554742970ec4bccf370855
Autor:
Garbulowski, Mateusz, Hillerton, Thomas, Morgan, Daniel, Seçilmiş, Deniz, Sonnhammer, Lisbet, Tjärnberg, Andreas, Nordling, Torbjörn E M, Sonnhammer, Erik L L
Publikováno v:
NAR Genomics & Bioinformatics; Sep2024, Vol. 6 Issue 3, p1-7, 7p
Autor:
Deniz Seçilmiş, Thomas Hillerton, Andreas Tjärnberg, Sven Nelander, Torbjörn E. M. Nordling, Erik L. L. Sonnhammer
Publikováno v:
Scientific Reports, Vol 12, Iss 1, Pp 1-12 (2022)
Abstract The gene regulatory network (GRN) of a cell executes genetic programs in response to environmental and internal cues. Two distinct classes of methods are used to infer regulatory interactions from gene expression: those that only use observe
Externí odkaz:
https://doaj.org/article/79637b11433a4eada747b6b0a92cb23c
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Daniel Morgan, Matthew Studham, Andreas Tjärnberg, Holger Weishaupt, Fredrik J. Swartling, Torbjörn E. M. Nordling, Erik L. L. Sonnhammer
Publikováno v:
Scientific Reports, Vol 10, Iss 1, Pp 1-12 (2020)
Abstract The gene regulatory network (GRN) of human cells encodes mechanisms to ensure proper functioning. However, if this GRN is dysregulated, the cell may enter into a disease state such as cancer. Understanding the GRN as a system can therefore h
Externí odkaz:
https://doaj.org/article/82d92cd771e2430780af2d03d54742cb
Publikováno v:
Nature Communications, Vol 11, Iss 1, Pp 1-10 (2020)
The study of disease modules facilitates insight into complex diseases, but their identification relies on knowledge of molecular networks. Here, the authors show that disease modules and genes can also be discovered in deep autoencoder representatio
Externí odkaz:
https://doaj.org/article/96fd96e94588460582e8f7d08f364317
Autor:
Bernadskaya YY; Department of Biology, New York University, New York, NY, USA., Kuan A; Department of Biology, New York University, New York, NY, USA., Tjärnberg A; Department of Biology, New York University, New York, NY, USA., Brandenburg J; Michael Sars Centre, University of Bergen, Bergen, Norway., Zheng P; Fang Centre, Ocean University of China, Qingdao, China., Wiechecki K; Department of Biology, New York University, New York, NY, USA., Kaplan N; Department of Biology, New York University, New York, NY, USA., Failla M; Michael Sars Centre, University of Bergen, Bergen, Norway.; Department of Biology, New York University, New York, NY, USA., Bikou M; Department of Biology, New York University, New York, NY, USA., Madilian O; Department of Biology, New York University, New York, NY, USA., Wang W; Department of Biology, New York University, New York, NY, USA.; Fang Centre, Ocean University of China, Qingdao, China., Christiaen L; Michael Sars Centre, University of Bergen, Bergen, Norway.; Department of Biology, New York University, New York, NY, USA.
Publikováno v:
BioRxiv : the preprint server for biology [bioRxiv] 2024 Jul 23. Date of Electronic Publication: 2024 Jul 23.
Autor:
Danuta R. Gawel, Jordi Serra-Musach, Sandra Lilja, Jesper Aagesen, Alex Arenas, Bengt Asking, Malin Bengnér, Janne Björkander, Sophie Biggs, Jan Ernerudh, Henrik Hjortswang, Jan-Erik Karlsson, Mattias Köpsen, Eun Jung Lee, Antonio Lentini, Xinxiu Li, Mattias Magnusson, David Martínez-Enguita, Andreas Matussek, Colm E. Nestor, Samuel Schäfer, Oliver Seifert, Ceylan Sonmez, Henrik Stjernman, Andreas Tjärnberg, Simon Wu, Karin Åkesson, Alex K. Shalek, Margaretha Stenmarker, Huan Zhang, Mika Gustafsson, Mikael Benson
Publikováno v:
Genome Medicine, Vol 11, Iss 1, Pp 1-25 (2019)
Abstract Background Genomic medicine has paved the way for identifying biomarkers and therapeutically actionable targets for complex diseases, but is complicated by the involvement of thousands of variably expressed genes across multiple cell types.
Externí odkaz:
https://doaj.org/article/df9e574b19784a248beeb061ae47db7f
Optimal tuning of weighted kNN- and diffusion-based methods for denoising single cell genomics data.
Autor:
Andreas Tjärnberg, Omar Mahmood, Christopher A Jackson, Giuseppe-Antonio Saldi, Kyunghyun Cho, Lionel A Christiaen, Richard A Bonneau
Publikováno v:
PLoS Computational Biology, Vol 17, Iss 1, p e1008569 (2021)
The analysis of single-cell genomics data presents several statistical challenges, and extensive efforts have been made to produce methods for the analysis of this data that impute missing values, address sampling issues and quantify and correct for
Externí odkaz:
https://doaj.org/article/a8a4056d539749db956875c60e591791
Optimal tuning of weighted kNN- and diffusion-based methods for denoising single cell genomics data.
Autor:
Tjärnberg, Andreas1,2,3 (AUTHOR) andreas.tjarnberg@nyu.edu, Mahmood, Omar4 (AUTHOR), Jackson, Christopher A.2,3 (AUTHOR), Saldi, Giuseppe-Antonio2 (AUTHOR), Cho, Kyunghyun5,6 (AUTHOR), Christiaen, Lionel A.1,3 (AUTHOR), Bonneau, Richard A.2,3,4,5,6 (AUTHOR) andreas.tjarnberg@nyu.edu
Publikováno v:
PLoS Computational Biology. 1/7/2021, Vol. 17 Issue 1, p1-22. 22p. 1 Diagram, 3 Charts, 4 Graphs.