Zobrazeno 1 - 9
of 9
pro vyhledávání: '"Tiziano, Dalmonte"'
Publikováno v:
Journal of Logic and Computation.
The logic of bringing-it-about (BIAT) aims to capture a notion of agency in which actions are analysed in terms of their results: ‘An agent does something’ means that the agent brings it about that something takes place. Our starting point is the
Publikováno v:
Logic, Language, Information, and Computation ISBN: 9783031152979
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::86c9217eebd981263a0691dff8d2e21f
https://doi.org/10.1007/978-3-031-15298-6_18
https://doi.org/10.1007/978-3-031-15298-6_18
Publikováno v:
Automated Reasoning with Analytic Tableaux and Related Methods. TABLEAUX 2021
Automated Reasoning with Analytic Tableaux and Related Methods. TABLEAUX 2021, Sep 2021, Birmingham, United Kingdom. pp.391-408, ⟨10.1007/978-3-030-86059-2_23⟩
Lecture Notes in Computer Science ISBN: 9783030860585
TABLEAUX
Automated Reasoning with Analytic Tableaux and Related Methods. TABLEAUX 2021, Sep 2021, Birmingham, United Kingdom. pp.391-408, ⟨10.1007/978-3-030-86059-2_23⟩
Lecture Notes in Computer Science ISBN: 9783030860585
TABLEAUX
We investigate terminating sequent calculi for constructive modal logics \(\mathsf {CK}\) and \(\mathsf {CCDL}\) in the style of Dyckhoff’s calculi for intuitionistic logic. We first present strictly terminating calculi for these logics. Our calcul
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::df2bec9adf1e7ac1b19402be8de652b8
https://amu.hal.science/hal-03518430/document
https://amu.hal.science/hal-03518430/document
Publikováno v:
Journal of Philosophical Logic
Journal of Philosophical Logic, Springer Verlag, 2020
Journal of Philosophical Logic, 2020
Journal of Philosophical Logic, Springer Verlag, 2020
Journal of Philosophical Logic, 2020
We define a family of intuitionistic non-normal modal logics; they can bee seen as intuitionistic counterparts of classical ones. We first consider monomodal logics, which contain only one between Necessity and Possibility. We then consider the more
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::863b8c64a7553262e31d897c3f952ee2
https://hal.archives-ouvertes.fr/hal-02439704
https://hal.archives-ouvertes.fr/hal-02439704
Publikováno v:
Logical Foundations of Computer Science-International Symposium, LFCS 2020
Logical Foundations of Computer Science-International Symposium, LFCS 2020, Jan 2020, Deerfield Beach, United States
Logical Foundations of Computer Science ISBN: 9783030367541
LFCS
Logical Foundations of Computer Science-International Symposium, LFCS 2020, Jan 2020, Deerfield Beach, United States
Logical Foundations of Computer Science ISBN: 9783030367541
LFCS
International audience; We develop semantically-oriented calculi for the cube of non-normal modal logics and some deontic extensions. The calculi manipulate hypersequents and have a simple semantic interpretation. Their main feature is that they allo
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::8da18708a2f56eaa75addea61fa0f5c8
https://hal-amu.archives-ouvertes.fr/hal-02436312
https://hal-amu.archives-ouvertes.fr/hal-02436312
Publikováno v:
Journal of Logic and Computation
Journal of Logic and Computation, 2021, 31 (1), pp.67-111. ⟨10.1093/logcom/exaa072⟩
Journal of Logic and Computation, Oxford University Press (OUP), 2021, 31 (1), pp.67-111. ⟨10.1093/logcom/exaa072⟩
Journal of Logic and Computation, 2021, 31 (1), pp.67-111. ⟨10.1093/logcom/exaa072⟩
Journal of Logic and Computation, Oxford University Press (OUP), 2021, 31 (1), pp.67-111. ⟨10.1093/logcom/exaa072⟩
We present some hypersequent calculi for all systems of the classical cube and their extensions with axioms ${T}$, ${P}$ and ${D}$ and for every $n \geq 1$, rule ${RD}_n^+$. The calculi are internal as they only employ the language of the logic, plus
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::e608db2a5e1db9e39d869d9d3e7e3cab
Publikováno v:
Intelligenza Artificiale
Intelligenza Artificiale, 2021, 14 (2), pp.215-229. ⟨10.3233/IA-200052⟩
Intelligenza Artificiale, 2021, 14 (2), pp.215-229. ⟨10.3233/IA-200052⟩
International audience; In this work we present PRONOM, a theorem prover and countermodel generator for non-normal modal logics. PRONOM implements some labelled sequent calculi recently introduced for the basic system E and its extensions with axioms
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::24e0fd47996b9ec668182266623b55f8
http://hdl.handle.net/2318/1795576
http://hdl.handle.net/2318/1795576
Publikováno v:
Lecture Notes in Computer Science ISBN: 9783030351656
AI*IA
AIIA 2019: 18th International Conference of the Italian Association for Artificial Intelligence
AIIA 2019: 18th International Conference of the Italian Association for Artificial Intelligence, Nov 2019, Rende, Italy
AI*IA
AIIA 2019: 18th International Conference of the Italian Association for Artificial Intelligence
AIIA 2019: 18th International Conference of the Italian Association for Artificial Intelligence, Nov 2019, Rende, Italy
We present PRONOM, a theorem prover and countermodel generator for non-normal modal logics. PRONOM implements some labelled sequent calculi recently introduced for the basic system \(\mathbf {E}\) and its extensions with axioms M, N, and C based on b
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::b02eee172eb38d53d102bf0d7e565af9
https://doi.org/10.1007/978-3-030-35166-3_12
https://doi.org/10.1007/978-3-030-35166-3_12