Zobrazeno 1 - 10
of 158
pro vyhledávání: '"Tirao, P. A."'
Autor:
Barrionuevo, Josefina, Tirao, Paulo
We characterize those graphs which correspond to a rigid 2-step nilpotent Lie algebra in the variety of at most 2-step nilpotent Lie algebras.
Externí odkaz:
http://arxiv.org/abs/2206.10572
Autor:
Barrionuevo, Josefina, Tirao, Paulo
We present a novel construction of linear deformations for Lie algebras and use it to prove the non-rigidity of several classes of Lie algebras in different varieties. We consider the family of Lie algebras with an abelian factor showing that, in gen
Externí odkaz:
http://arxiv.org/abs/2101.09670
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
We exhibit an example of a filiform (complex) Lie algebra of dimension 13 with all its ideals of codimension 1 being characteristically nilpotent, and we construct a non trivial filiform deformation of it.
Externí odkaz:
http://arxiv.org/abs/1802.09432
Autor:
Tirao, Paulo, Vera, Sonia
We prove that there are no rigid complex filiform Lie algebras in the variety of (filiform) Lie algebras of dimension less than or equal to 11. More precisely we show that in any Euclidean neighborhood of a filiform Lie bracket (of low dimension), th
Externí odkaz:
http://arxiv.org/abs/1709.04793
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Tirao, Juan
We introduce the notion of a pre-sequence of matrix orthogonal polynomials to mean a sequence {F_n} of matrix orthogonal functions with respect to a weight function W, satisfying a three term recursion relation and such that det(F_0) is not zero almo
Externí odkaz:
http://arxiv.org/abs/1503.04787
Autor:
Tirao, Juan, Zurrián, Ignacio
Publikováno v:
The Ramanujan Journal, 2016, 1-26
In this paper we discuss the notion of reducibility for matrix weights and introduce a real vector space $\mathcal C_\mathbb{R}$ which encodes all information about the reducibility of $W$. In particular a weight $W$ reduces if and only if there is a
Externí odkaz:
http://arxiv.org/abs/1501.04059
Autor:
Cagliero, Leandro, Tirao, Paulo
Given a finite dimensional Lie algebra $\mathfrak{g}$, let $\Gamma_\circ(\mathfrak{g})$ be the set of irreducible $\mathfrak{g}$-modules with non-vanishing cohomology. We prove that a $\mathfrak{g}$-module $V$ belongs to $\Gamma_\circ(\mathfrak{g})$
Externí odkaz:
http://arxiv.org/abs/1403.4083
Publikováno v:
SIGMA 10 (2014), 071, 41 pages
In this paper, we describe the irreducible spherical functions of fundamental $K$-types associated with the pair $(G,K)=({\mathrm{SO}}(n+1),{\mathrm{SO}}(n))$ in terms of matrix hypergeometric functions. The output of this description is that the irr
Externí odkaz:
http://arxiv.org/abs/1312.0909