Zobrazeno 1 - 10
of 29
pro vyhledávání: '"Tipping, Michael E."'
We introduce a dynamic approach to probabilistic forecast reconciliation at scale. Our model differs from the existing literature in this area in several important ways. Firstly we explicitly allow the weights allocated to the base forecasts in formi
Externí odkaz:
http://arxiv.org/abs/2409.12856
We examine the problem of making reconciled forecasts of large collections of related time series through a behavioural/Bayesian lens. Our approach explicitly acknowledges and exploits the 'connectedness' of the series in terms of time-series charact
Externí odkaz:
http://arxiv.org/abs/2209.15583
Autor:
Tipping, Michael E.
This thesis is a study of the generation of topographic mappings - dimension reducing transformations of data that preserve some element of geometric structure - with feed-forward neural networks. As an alternative to established methods, a transform
Externí odkaz:
http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.307529
Publikováno v:
Journal of the Royal Statistical Society. Series B (Statistical Methodology), 1999 Jan 01. 61(3), 611-622.
Externí odkaz:
https://www.jstor.org/stable/2680726
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Tipping, Michael E. *, Lawrence, Neil D.
Publikováno v:
In Neurocomputing 2005 69(1):123-141
Publikováno v:
Statistics and Neural Networks: Advances at the Interface.
Externí odkaz:
https://doi.org/10.1093/oso/9780198524229.003.0006
Autor:
Tipping, Michael E.
Publikováno v:
Journal of Machine Learning Research. Jun2001, Vol. 1 Issue 3, p211-244. 34p. 2 Diagrams, 2 Charts, 13 Graphs.
Autor:
Tipping, Michael E.1, Bishop, Christopher M.1
Publikováno v:
Neural Computation. 02/15/99, Vol. 11 Issue 2, p443-482. 40p. 4 Black and White Photographs, 3 Diagrams, 2 Graphs.
Publikováno v:
Bishop, C M & Tipping, M E 2003, Bayesian Regression and Classification . in J A K Suykens, I Horvath, S Basu, C Micchelli & J V (eds), Advances in Learning Theory: Methods, Models and Applications . NATO Science Series, III: Computer and Systems Sciences, vol. 190, IOS Press, pp. 267-285 .
In recent years Bayesian methods have become widespread in many domains including computer vision, signal processing, information retrieval and genome data analysis. The availability of fast computers allows the required computations to be performed
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od______3094::dd104ac3db98b34f76cbd0acd073a5af
https://hdl.handle.net/20.500.11820/563c317f-a0e3-49a4-ad8d-225ba6249e41
https://hdl.handle.net/20.500.11820/563c317f-a0e3-49a4-ad8d-225ba6249e41