Zobrazeno 1 - 10
of 13
pro vyhledávání: '"Tingyi Wanyan"'
Autor:
Hossein Honarvar, PhD, Chirag Agarwal, PhD, Sulaiman Somani, MD, Akhil Vaid, MD, Joshua Lampert, MD, Tingyi Wanyan, PhD, Vivek Y. Reddy, MD, Girish N. Nadkarni, MD, Riccardo Miotto, PhD, Marinka Zitnik, PhD, Fei Wang, PhD, Benjamin S. Glicksberg, PhD
Publikováno v:
Cardiovascular Digital Health Journal, Vol 3, Iss 5, Pp 220-231 (2022)
Background: Electrocardiogram (ECG) deep learning (DL) has promise to improve the outcomes of patients with cardiovascular abnormalities. In ECG DL, researchers often use convolutional neural networks (CNNs) and traditionally use the full duration of
Externí odkaz:
https://doaj.org/article/7106b3c922994d84a741ddc460870603
Autor:
Junghwan Lee, Tingyi Wanyan, Qingyu Chen, Tiarnan D. L. Keenan, Benjamin S. Glicksberg, Emily Y. Chew, Zhiyong Lu, Fei Wang, Yifan Peng
Publikováno v:
Mach Learn Med Imaging
Machine Learning in Medical Imaging ISBN: 9783031210136
Machine Learning in Medical Imaging ISBN: 9783031210136
Accurately predicting a patient’s risk of progressing to late age-related macular degeneration (AMD) is difficult but crucial for personalized medicine. While existing risk prediction models for progression to late AMD are useful for triaging patie
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::f161ab864668e43300f3bfdc32090b43
https://europepmc.org/articles/PMC9842432/
https://europepmc.org/articles/PMC9842432/
Autor:
Tingyi Wanyan, Mingquan Lin, Eyal Klang, Kartikeya M. Menon, Faris F. Gulamali, Ariful Azad, Yiye Zhang, Ying Ding, Zhangyang Wang, Fei Wang, Benjamin Glicksberg, Yifan Peng
Publikováno v:
ACM BCB
Clinical EHR data is naturally heterogeneous, where it contains abundant sub-phenotype. Such diversity creates challenges for outcome prediction using a machine learning model since it leads to high intra-class variance. To address this issue, we pro
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::071a38f00cdca7ab93ba56efc4767dc8
https://europepmc.org/articles/PMC9365529/
https://europepmc.org/articles/PMC9365529/
Publikováno v:
Data Intelligence. 3:329-339
Computational prediction of in-hospital mortality in the setting of an intensive care unit can help clinical practitioners to guide care and make early decisions for interventions. As clinical data are complex and varied in their structure and compon
Autor:
Ariful Azad, Benjamin S. Glicksberg, Ying Ding, Jessica K De Freitas, Akhil Vaid, Sulaiman Somani, Tingyi Wanyan, Riccardo Miotto, Girish N. Nadkarni
Publikováno v:
IEEE transactions on big data
Traditional Machine Learning (ML) models have had limited success in predicting Coronoavirus-19 (COVID-19) outcomes using Electronic Health Record (EHR) data partially due to not effectively capturing the inter-connectivity patterns between various d
Publikováno v:
Diversity, Divergence, Dialogue ISBN: 9783030712914
iConference (1)
iConference (1)
Knowledge Graphs have been one of the fundamental methods for integrating heterogeneous data sources. Integrating heterogeneous data sources is crucial, especially in the biomedical domain, where central data-driven tasks such as drug discovery rely
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::79c36834b91dbff2fe6912c764b83f93
https://doi.org/10.1007/978-3-030-71292-1_10
https://doi.org/10.1007/978-3-030-71292-1_10
Autor:
Akhil Vaid, Suraj K Jaladanki, Jie Xu, Shelly Teng, Arvind Kumar, Samuel Lee, Sulaiman Somani, Ishan Paranjpe, Jessica K De Freitas, Tingyi Wanyan, Kipp W Johnson, Mesude Bicak, Eyal Klang, Young Joon Kwon, Anthony Costa, Shan Zhao, Riccardo Miotto, Alexander W Charney, Erwin Böttinger, Zahi A Fayad, Girish N Nadkarni, Fei Wang, Benjamin S Glicksberg
BACKGROUND Machine learning models require large datasets that may be siloed across different health care institutions. Machine learning studies that focus on COVID-19 have been limited to single-hospital data, which limits model generalizability. OB
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::d2eb60dce0364809cfccd728624ec353
https://doi.org/10.2196/preprints.24207
https://doi.org/10.2196/preprints.24207
Autor:
Riccardo Miotto, Samuel J. Lee, Ishan Paranjpe, Fei Wang, Arvind Kumar, Zahi A. Fayad, Jessica K De Freitas, Jie Xu, Shelly Teng, Young Joon Kwon, Mesude Bicak, Tingyi Wanyan, Kipp W. Johnson, Benjamin S. Glicksberg, Shan Zhao, Girish N. Nadkarni, Eyal Klang, Akhil Vaid, Erwin P. Bottinger, Suraj K. Jaladanki, Sulaiman Somani, Anthony Costa, Alexander W. Charney
Publikováno v:
medRxiv
article-version (status) pre
article-version (number) 1
JMIR Medical Informatics
JMIR Medical Informatics, Vol 9, Iss 1, p e24207 (2021)
article-version (status) pre
article-version (number) 1
JMIR Medical Informatics
JMIR Medical Informatics, Vol 9, Iss 1, p e24207 (2021)
Background Machine learning models require large datasets that may be siloed across different health care institutions. Machine learning studies that focus on COVID-19 have been limited to single-hospital data, which limits model generalizability. Ob
Autor:
Erwin P. Bottinger, Zahi A. Fayad, Samuel J. Lee, Shan Zhao, Arvind Kumar, Girish N. Nadkarni, Eyal Klang, Fei Wang, Kipp W. Johnson, Suraj K. Jaladanki, Shelly Teng, Mesude Bicak, Ishan Paranjpe, Jie Xu, Jessica K De Freitas, Sulaiman Somani, Riccardo Miotto, Anthony Costa, Alexander W. Charney, Young Joon Kwon, Tingyi Wanyan, Akhil Vaid, Benjamin S. Glicksberg
Machine learning (ML) models require large datasets which may be siloed across different healthcare institutions. Using federated learning, a ML technique that avoids locally aggregating raw clinical data across multiple institutions, we predict mort
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::35ec8bfef3f82df3d972f242d8a72a54
https://doi.org/10.1101/2020.08.11.20172809
https://doi.org/10.1101/2020.08.11.20172809
Autor:
Ariful Azad, Riccardo Miotto, Martin Kang, Ying Ding, Akhil Vaid, Marcus A. Badgeley, Justin F. Rousseau, Kipp W. Johnson, Fei Wang, Shan Zhao, Benjamin S. Glicksberg, Girish N. Nadkarni, Jessica K De Freitas, Fayzan Chaudhry, Tingyi Wanyan
Publikováno v:
Artificial Intelligence in Medicine ISBN: 9783030591366
AIME
AIME
Electronic Health Record (EHR) data is a rich source for powerful biomedical discovery but it consists of a wide variety of data types that are traditionally difficult to model. Furthermore, many machine learning frameworks that utilize these data fo
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::923894311cf9c948116b116181be5cb9
https://doi.org/10.1007/978-3-030-59137-3_2
https://doi.org/10.1007/978-3-030-59137-3_2