Zobrazeno 1 - 7
of 7
pro vyhledávání: '"Tin Trung Duong"'
A Deep Learning Framework for Robust and Real-Time Taillight Detection Under Various Road Conditions
Publikováno v:
IEEE Transactions on Intelligent Transportation Systems. 23:20061-20072
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
IMCOM
In this research, a multitask convolutional neural network that can do end-to-end road scene classification and semantic segmentation, which are the two crucial tasks for advanced driver assistance systems (ADAS), is proposed. We name the network TSS
Publikováno v:
2020 IEEE International Conference on Consumer Electronics - Asia (ICCE-Asia).
In this paper, we present a conceptually simple, flexible, and general classifier for road scene multi-label classification. This method, called a combined classifier, enhances the main multi-label classifier with the single-label classifiers using a
Publikováno v:
2016 IEEE International Conference on Consumer Electronics-Asia (ICCE-Asia).
Autonomous driving cars have become a trend in the vehicle industry. Numerous driver assistance systems (DAS) have been introduced to support these automatic cars. Among these DAS methods, traffic light detection (TLD) plays a significant role. This
Publikováno v:
2016 IEEE International Conference on Consumer Electronics-Asia (ICCE-Asia).
In this paper, we present a near real time approach to lane detection in highway and urban streets using images captured from monocular cameras as an input. The proposed method includes four main steps. First, the input image is transformed to a bird
Publikováno v:
2013 Third World Congress on Information and Communication Technologies (WICT 2013).
Vehicles detection and classification are the most popular subjects in the computer vision researching field, and also are the most important parts in any traffic monitoring or surveillance system. Although there has been a considerable amount of ide